题目描述:
给定n个矩阵{A1,A2,…,An},其中,Ai与Ai+1是可乘的,(i=1,2 ,…,n-1)。用加括号的方法表示矩阵连乘的次序,不同的计算次序计算量(乘法次数)是不同的,找出一种加括号的方法,使得矩阵连乘的次数最小。
代码
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
void matrix(int N, vector<int> &p, vector<vector<long long int>> &m, vector<vector<int>> &s)
{
// len =1
for (int i = 1; i <= N; ++i)
m[i][i] = 0;
//len >=2
int i, j, len = 2;
for (; len <= N; ++len)
{
for (i = 1, j = i + len - 1; j <= N; ++i, ++j)
{
m[i][j] = m[i][i] + m[i + 1][j] + p[i - 1] * p[i] * p[j];
s[i][j] = i;
for (int k = i + 1; k < j; ++k)
{
long long int t = m[i][k] + m[k + 1][j] + p[i - 1] * p[k] * p[j];
if (t < m[i][j])
{
m[i][j] = t;
s[i][j] = k;
}
}
}
}
}
void back(int i, int j, const vector<vector<int>> &s, vector<int> &v)
{
if (i == j)
return;
int k = s[i][j];
back(i, k, s, v);
back(k + 1, j, s, v);
v.push_back(k);
}
void print(vector<int> v)
{
sort(v.begin(), v.end());
for (int i = 0; i < v.size(); ++i)
{
if (i)
cout << " ";
cout << v[i];
}
}
int main()
{
int N;
cin >> N;
vector<int> p(N + 1);
vector<vector<long long>> m(N + 1, vector<long long int>(N + 1));
vector<vector<int>> s(N + 1, vector<int>(N + 1));
for (int i = 0; i <= N; ++i)
cin >> p[i];
matrix(N, p, m, s);
cout << m[1][N] << endl;
// vector<int> ans_k;
// back(1, N, s, ans_k);
// print(ans_k);
}