DeepSeek中的Multi-head Latent Attention技术

该文章已生成可运行项目,

一、概念

        近来DeepSeek可谓是蜚声中外,而最新的DeepSeek-V3版本模型中,开发团队指出为了实现高效的推理和低成本的训练,DeepSeek-V3采用了Multi-head Latent Attention,即MLA技术。 MLA是一种创新的注意力机制,旨在显著降低推理时的显存占用和计算开销,同时保持模型性能,在论文《DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model》中被提出,本文将详细介绍相关概念。

二、核心原理

        MLA相较于传统多头注意力机制MHA的优化主要有以下几个方面:

1、低秩KV联合压缩机制

        传统MHA需要保存完整的Key和Value缓存,从而很大程度上制约了batch size的扩大和序列长度的增加。MLA 的核心思想则是通过低秩分解对注意力中的键(Key)和值(Value)进行联合压缩,以此来减小缓存占用:

        其中,是注意力层中第 t 个token的注意力输入,是keys和values对应的压缩后的latent向量,是下投影矩阵,则是keys和values的上投影矩阵。在推理的过程中,MLA只需要缓存。此外,为了减少训练时激活函数的memory,MLA对于queries也进行了低秩压缩(当然这并不会对KV缓存造成影响):

        其中,是queries对应的latent向量,

本文章已经生成可运行项目
### Multi-head Latent Attention Mechanism in YOLO Object Detection Model Incorporating multi-head latent attention mechanisms into the YOLO object detection framework enhances feature extraction and context understanding within images. This approach allows for more robust identification of objects by focusing on relevant regions while suppressing noise or irrelevant information. The integration of such an attention mechanism can be achieved through several modifications to the original architecture: #### Feature Map Enhancement By applying a multi-head self-attention layer after each convolutional block, deeper interactions between spatial positions are captured. Each head learns different aspects of dependencies across locations, leading to richer representations that better capture complex patterns present in real-world scenes[^1]. ```python class MultiHeadAttention(nn.Module): def __init__(self, d_model, num_heads): super(MultiHeadAttention, self).__init__() assert d_model % num_heads == 0 self.d_k = d_model // num_heads self.num_heads = num_heads self.W_q = nn.Linear(d_model, d_model) self.W_v = nn.Linear(d_model, d_model) def forward(self, Q, K, V, mask=None): batch_size = Q.size(0) # Linear projections q = self.W_q(Q).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2) v = self.W_v(V).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2) # Scaled dot-product attention scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k) if mask is not None: scores = scores.masked_fill(mask == 0, -1e9) attn_weights = F.softmax(scores, dim=-1) output = torch.matmul(attn_weights, v).transpose(1, 2).contiguous().view(batch_size, -1, self.d_model) return output ``` This method improves upon traditional CNN-based approaches where only local receptive fields contribute directly to activations at higher layers. Instead, every position has access to global contextual cues via learned weighted sums over all other positions' features. #### Contextual Information Aggregation To further strengthen interdependencies among detected entities, cross-scale fusion techniques may also incorporate this type of attention module. By aggregating multi-level semantic knowledge from various scales simultaneously, performance gains become evident especially when dealing with occlusions or cluttered backgrounds common in practical applications like autonomous driving systems. Despite these advancements, challenges remain regarding computational efficiency due to increased parameter counts associated with additional modules as well as potential difficulties during training caused by vanishing gradients problems inherent in deep networks.
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值