CPU跑大模型怎么加速?

一、概念

        近几年,大模型的规模越做越大。普通码农没几张显卡几乎都跑不动动辄几百B的模型了。当然,随着SLM进一步发展,移动端、PC端部署SLM变得轻松了起来。即便只有CPU也能带得起3B以内的SLM,只不过推理速度比较感人。因此,我们需要通过一些优化来使得CPU也能高效地运行大型模型推理。这里,我们一起来看看HuggingFace教程给出的推理加速方案。

二、python实现

1、BetterTransformer

        BetterTransformer 通过其快速路径(Transformer函数的原生PyTorch专门实现)执行来加速推理。快速路径执行中的两种优化如下:

  • 将多个连续操作组合成一个单一的“内核”,以减少计算步骤的数量
  • 跳过padding tokens的固有稀疏性,以避免使用嵌套张量进行不必要的计算

        BetterTransformer还将所有注意力操作转换为使用更节省内存的缩放点积注意力。但需要注意不是所有模型都支持这个方法,具体可以查看官网链接

from transformers import AutoModelForSequenceClassific
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值