01背包问题:poj 3624 Charm Bracelet

本文介绍了一个经典的背包问题求解案例,通过动态规划算法实现,在给定的重量限制下选取一系列物品,以达到最高的价值总和。文章详细展示了如何初始化数组、进行状态转移,并最终输出最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

                                                                                                                                     Charm Bracelet
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 25953 Accepted: 11672

Description

Bessie has gone to the mall's jewelry store and spies a charm bracelet. Of course, she'd like to fill it with the best charms possible from the N (1 ≤ N ≤ 3,402) available charms. Each charm i in the supplied list has a weight Wi (1 ≤ Wi ≤ 400), a 'desirability' factor Di (1 ≤ Di ≤ 100), and can be used at most once. Bessie can only support a charm bracelet whose weight is no more than M (1 ≤ M ≤ 12,880).

Given that weight limit as a constraint and a list of the charms with their weights and desirability rating, deduce the maximum possible sum of ratings.

Input

* Line 1: Two space-separated integers: N and M
* Lines 2..N+1: Line i+1 describes charm i with two space-separated integers: Wi and Di

Output

* Line 1: A single integer that is the greatest sum of charm desirabilities that can be achieved given the weight constraints

Sample Input

4 6
1 4
2 6
3 12
2 7

Sample Output

23
刚开始的时候数组开到5000,结果RE了,改大数组之后就AC了。
#include<iostream>
#include<cstring>
using namespace std;
const int MAX=20000;
int dp[MAX];
int main()
{
	int N,M;
	while(cin>>N>>M)
	{
	
		int w[MAX];
		int v[MAX];
		memset(dp,0,sizeof(dp));
		for(int i =1 ;i <= N; i ++ )
		    cin>>w[i]>>v[i];
                for(int i = 1; i <= N;i ++){
        	     for(int j =M ;j >= w[i]; j--){
        		dp[j]=max(dp[j],dp[j-w[i]]+v[i]);
        	}
        }
        cout<<dp[M]<<endl;
	}
	return 0;
} 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值