题解:Charm Bracelet(基本0-1背包)

本文探讨了一个经典的计算机科学问题——背包问题。通过一个具体的案例,即Bessie在珠宝店选择魅力手链的魅力,展示了如何在重量限制下最大化魅力的总吸引力。文章详细解释了使用动态规划解决此问题的方法,包括输入输出格式、核心算法步骤和示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

Bessie has gone to the mall’s jewelry store and spies a charm bracelet. Of course, she’d like to fill it with the best charms possible from the N (1 ≤ N ≤ 3,402) available charms. Each charm i in the supplied list has a weight Wi (1 ≤ Wi ≤ 400), a ‘desirability’ factor Di (1 ≤ Di ≤ 100), and can be used at most once. Bessie can only support a charm bracelet whose weight is no more than M (1 ≤ M ≤ 12,880).
Given that weight limit as a constraint and a list of the charms with their weights and desirability rating, deduce the maximum possible sum of ratings.

Input

  • Line 1: Two space-separated integers: N and M

  • Lines 2…N+1: Line i+1 describes charm i with two space-separated integers: Wi and Di

    Output

  • Line 1: A single integer that is the greatest sum of charm desirabilities that can be achieved given the weight constraints

      Sample Input
      4 6
      1 4
      2 6
      3 12
      2 7
    
      Sample Output
      23
    
#include<iostream> 
#include<string>
#include<cstring>
#include<algorithm>
using namespace std;
int v[2000010];//重量为i的子集时的最大价值 
int main()
{
 int n,w,wi,vi;
 cin>>n>>w;
 memset(v,0,sizeof(v));
 for(int i=1;i<=n;i++)
 {
  cin>>wi>>vi;
  for(int j=w;j>=wi;j--)
   v[j]=max(v[j],v[j-wi]+vi);
 }
 cout<<v[w];
 return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值