Video-Based Sign Language Recognition without Temporal Segmentation

### 基于Transformer的空间时间网络在人体动作识别中的研究论文与实现 #### 研究背景与发展现状 近年来,随着深度学习技术的发展,基于Transformer架构的空间时间网络逐渐成为人体动作识别领域的重要方法之一。这类模型通过引入自注意力机制来捕捉视频序列中复杂的时空关系,显著提升了动作识别的效果。 #### 关键技术特点 - **多尺度特征提取**:利用卷积神经网络(CNNs)对输入帧进行初步处理,获取不同层次的视觉特征表示[^1]。 - **空间编码器**:采用标准的ViT(Visual Transformer)结构作为骨干网,在单个图像上构建强大的局部感知能力的同时保持全局理解力。 - **时间建模模块**:不同于传统的RNN/LSTM单元,这里设计了一种特殊的Temporal Encoder Layer用于表征相邻帧间的关系变化规律,从而增强对于动态行为的理解程度。 #### 实现框架概述 一种典型的基于Transformer的人体姿态估计方案可以概括如下: ```python import torch.nn as nn class SpatialTemporalTransformer(nn.Module): def __init__(self, num_classes=400): super(SpatialTemporalTransformer, self).__init__() # 定义CNN层以获得基础特征图谱 self.backbone = BackboneNet() # 构造一系列堆叠起来的时间维度上的transformer blocks self.temporal_transformers = nn.Sequential(*[ TemporalBlock() for _ in range(num_layers)]) # 分类头部分 self.classifier = ClassifierHead(num_classes) def forward(self, x): batch_size, seq_len, c, h, w = x.shape # 提取每帧的基础特征向量 features = [] for t in range(seq_len): feature_t = self.backbone(x[:,t,:,:,:]) features.append(feature_t.unsqueeze(dim=1)) spatial_features = torch.cat(features,dim=1) # 序列化后的数据送入temporal transformer做进一步加工 temporal_output = self.temporal_transformers(spatial_features) # 获取最终预测结果并返回 logits = self.classifier(temporal_output.mean(dim=1)) return logits ``` 此代码片段展示了如何定义一个简单的Spatio-Temporal Transformer模型来进行分类任务。实际应用时还需要考虑更多细节优化以及针对具体场景调整参数配置等问题。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值