把原序列 aaa 转换成逆序对序列 ddd,did_idi 表示 aia_iai 前有多少个数大于它。
容易知道,每个不同的 ddd 序列有且仅有一个对应的 aaa 序列。
所以我们只需要统计 ddd 序列的个数了。
ddd 序列需要满足的条件是:∀di≤i,∑i=1ndi=k\forall d_i \leq i, \sum_{i = 1}^{n} d_i = k∀di≤i,∑i=1ndi=k
容斥,枚举 ddd 的某些位置一定超过了他的下标。
则 ans=Fnk−∑i=1nFnk−i+∑i=1n∑j=i+1nFnk−i−j…ans = F_{n}^{k} - \sum_{i = 1}^{n}F_{n}^{k - i} + \sum_{i = 1}^{n}\sum_{j = i + 1}^{n}F_n^{k - i - j} …ans=Fnk−∑i=1nFnk−i+∑i=1n∑j=i+1nFnk−i−j…
发现会超时,则考虑展开后 Fnk−iF_{n}^{k - i}Fnk−i 的系数。
Fnk−iF_{n}^{k - i}Fnk−i 的系数为: 用一个数组成 iii 的方案数 - 用两个数组成 iii 的方案数 + ……… (这里的数都是 [1,n][1, n][1,n] 中互不相同的数)
考虑 dpdpdp
dp[i][j]dp[i][j]dp[i][j] 表示有 iii 个数在 [1,n][1, n][1,n] 中且这 iii 个数互不相同的,降序数列的个数,数的和为 jjj。
那么 dp[i][j]dp[i][j]dp[i][j] 有两种转移。
第一种: 确定了 iii 个数,给他们全部 +1+1+1, 则方案数 add(dp[i][j],dp[i][j−i])add (dp[i][j], dp[i][j - i])add(dp[i][j],dp[i][j−i])(最后一位一定不为 1)
第二种: 确定了 i−1i - 1i−1 个数,给他们全部 +1+1+1,则方案数 add(dp[i][j],dp[i−1][j−i]add (dp[i][j], dp[i - 1][j - i]add(dp[i][j],dp[i−1][j−i](最后一位一定为 1)
但是还有一个要求,这 iii 个数小于等于 nnn,我们要去掉有数大于 nnn 的方案的贡献。
因为数互不相同,每次最多+1,且超过 nnn 了这种方案就马上被去掉,所以有且仅有第一个数超过了 nnn。
所以去掉这个数(第一个数)考虑,其他的数都小于 nnn 且为降序,所以重复的方案数为 dp[i−1][j−(n+1)]dp[i - 1][j - (n + 1)]dp[i−1][j−(n+1)]。
参考代码
#include <cmath>
#include <queue>
#include <vector>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define fi first
#define se second
#define db double
#define LL long long
#define ULL unsigned long long
#define PII pair <int, int>
#define MP(x,y) make_pair (x, y)
#define rep(i,j,k) for (int i = (j); i <= (k); i++)
#define per(i,j,k) for (int i = (j); i >= (k); i--)
template <typename T> T Max (T x, T y) { return x > y ? x : y; }
template <typename T> T Min (T x, T y) { return x < y ? x : y; }
template <typename T> T Abs (T x) { return x > 0 ? x : -x; }
template <typename T>
void read (T &x) {
x = 0; T f = 1;
char ch = getchar ();
while (ch < '0' || ch > '9') {
if (ch == '-') f = -1;
ch = getchar ();
}
while (ch >= '0' && ch <= '9') {
x = (x << 3) + (x << 1) + ch - '0';
ch = getchar ();
}
x *= f;
}
char For_Print[25];
template <typename T>
void write (T x) {
if (x == 0) { putchar ('0'); return; }
if (x < 0) { putchar ('-'); x = -x; }
int poi = 0;
while (x) {
For_Print[++poi] = x % 10 + '0';
x /= 10;
}
while (poi) putchar (For_Print[poi--]);
}
template <typename T>
void print (T x, char ch) {
write (x); putchar (ch);
}
const int Maxn = 1e5;
const int Maxsn = 1000;
const LL Mod = 1e9 + 7;
int n, k;
LL f[Maxn + 5], dp[2][Maxn + 5];
LL fac[Maxn * 2 + 5], inv_fac[Maxn * 2 + 5];
void add (LL &x, LL y) { ((x += y) >= Mod) && (x -= Mod); }
void del (LL &x, LL y) { ((x -= y) < 0) && (x += Mod); }
LL quick_pow (LL x, LL y) {
if (y < 0) return 1;
LL res = 1;
while (y) {
if (y & 1) res = (res * x) % Mod;
x = (x * x) % Mod; y >>= 1;
}
return res;
}
LL inv (LL x) {
return quick_pow (x, Mod - 2);
}
LL C (LL x, LL y) {
if (y > x) return 0;
if (y == 0 || y == x) return 1;
if (x < 0 || y < 0) return 0;
return fac[x] * inv_fac[y] % Mod * inv_fac[x - y] % Mod;
}
int main () {
fac[1] = 1; rep (i, 2, Maxn * 2) fac[i] = fac[i - 1] * i % Mod;
inv_fac[Maxn * 2] = inv (fac[Maxn * 2]); per (i, Maxn * 2 - 1, 1) inv_fac[i] = inv_fac[i + 1] * (i + 1) % Mod;
read (n); read (k);
f[0] = dp[0][0] = 1;
rep (i, 1, Maxsn) {
memset (dp[i & 1], 0, sizeof dp[i & 1]);
rep (j, 0, k) {
add (dp[i & 1][j], (j - i >= 0 ? dp[(i - 1) & 1][j - i] : 0));
add (dp[i & 1][j], (j - i >= 0 ? dp[i & 1][j - i] : 0));
del (dp[i & 1][j], (j - (n + 1) >= 0) ? dp[(i - 1) & 1][j - (n + 1)] : 0);
if (i & 1) del (f[j], dp[i & 1][j]);
else add (f[j], dp[i & 1][j]);
}
}
LL res = 0;
rep (i, 0, k) {
add (res, f[i] * C (k - i + n - 1, n - 1) % Mod);
}
write (res);
return 0;
}