发现每次询问其实相当于,问dfs序在一段区间内,深度在一段区间内的点的贡献是多少,这个是经典的二维矩形求和的问题。
因为数据比较大,考虑用主席树来维护这个信息。
我们用主席树维护深度,权值为贡献,然后按DFS序加点进去,最后区间查询就可以了。
/* Telekinetic Forest Guard */
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
const int maxn = 300005, maxm = 300005, maxnode = 7000000;
int n, m, head[maxn], cnt, depth[maxn], id[maxn], dfn[maxn], ed[maxn], size[maxn], clo;
struct _edge {
int v, next;
} g[maxm << 1];
int root[maxn], son[maxnode][2], segcnt;
LL sum[maxnode];
inline int iread() {
int f = 1, x = 0; char ch = getchar();
for(; ch < '0' || ch > '9'; ch = getchar()) f = ch == '-' ? -1 : 1;
for(; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + ch - '0';
return f * x;
}
inline void add(int u, int v) {
g[cnt] = (_edge){v, head[u]};
head[u] = cnt++;
}
inline void dfs(int x, int f) {
dfn[x] = ++clo;
id[clo] = x;
size[x] = 1;
for(int i = head[x]; ~i; i = g[i].next) if(g[i].v ^ f) {
depth[g[i].v] = depth[x] + 1;
dfs(g[i].v, x);
size[x] += size[g[i].v];
}
ed[x] = clo;
}
inline void insert(int last, int &now, int l, int r, int x, int c) {
now = ++segcnt;
sum[now] = sum[last] + c;
if(l == r) return;
son[now][0] = son[last][0]; son[now][1] = son[last][1];
int mid = l + r >> 1;
if(x <= mid) insert(son[last][0], son[now][0], l, mid, x, c);
else insert(son[last][1], son[now][1], mid + 1, r, x, c);
}
inline LL query(int last, int now, int l, int r, int x, int y) {
if(x <= l && r <= y) return sum[now] - sum[last];
int mid = l + r >> 1;
LL res = 0;
if(x <= mid) res += query(son[last][0], son[now][0], l, mid, x, y);
if(y > mid) res += query(son[last][1], son[now][1], mid + 1, r, x, y);
return res;
}
int main() {
n = iread(); m = iread();
for(int i = 1; i <= n; i++) head[i] = -1; cnt = 0;
for(int i = 1; i < n; i++) {
int u = iread(), v = iread();
add(u, v); add(v, u);
}
depth[1] = 1;
dfs(1, 0);
for(int i = 1; i <= n; i++) insert(root[i - 1], root[i], 1, n, depth[id[i]], size[id[i]] - 1);
while(m--) {
int x = iread(), k = iread();
LL ans = (LL)min(k, depth[x] - 1) * (size[x] - 1);
ans += query(root[dfn[x] - 1], root[ed[x]], 1, n, depth[x] + 1, min(depth[x] + k, n));
printf("%lld\n", ans);
}
return 0;
}