AI Agent系列(9):环境自适应与群体共识涌现
一、分布式认知共振原理
1. 量子化信念传播算法
import networkx as nx
import torch
class QuantumConsensus:
def __init__(self, num_agents=10):
self.graph = nx.watts_strogatz_graph(num_agents, 4, 0.3)
self.belief_states = torch.rand(num_agents, 128) # 128维认知量子态
def entanglement_step(self):
"""通过环境介质进行波函数纠缠"""
adjacency = torch.tensor(nx.adjacency_matrix(self.graph).todense(), dtype=torch.cfloat)
combined_states = adjacency @ self.belief_states
# 冯·诺依曼测量投影
self.belief_states = torch.real(torch.fft.ifft(combined_states.abs() * torch.exp(1j * combined_states.angle())))
class EnvironmentalMedium:
def __init__(self):
self.metric_tensor = torch.randn(256,256)
def protocol_diffusion(self, messages):
"""在黎曼流形上执行信息扩散"""
distorted = messages @ self.metric_tensor.t()
return 0.5*(distorted + distorted.T) # 保持对称性的流形投影
2. 自洽场方程
共识动力学方程:
iℏ∂Ψ∂t=[−ℏ22m∇2+V(x)+β∑j≠i∣Ψj∣2]Ψi
i\hbar\frac{\partial \Psi}{\partial t} = \left[ -\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{x}) + \beta \sum_{j\neq i} |\Psi_j|^2 \right] \Psi_i
iℏ∂t∂Ψ=−2mℏ2∇2+V(x)+βj=i∑∣Ψj∣2Ψi
其中β\betaβ表征智能体间认知耦合强度,V(x)V(\mathbf{x})V(x)为环境势场
二、群体智能相位同步
1. 临界态同步器
import numpy as np
class KuramotoSwarm:
def __init__(self, n_oscillators=50):
self.frequencies = np.random.normal(1.0, 0.2, n_oscillators)
self.phasors = np.random.rand(n_oscillators)*2*np.pi
def sync_operator(self, K=0.5):
"""实施非线性耦合(含记忆回响效应)"""
phase_diff = np.subtract.outer(self.phasors, self.phasors)
coupling = K * np.sin(phase_diff).mean(axis=1)
delta_theta = self.frequencies + coupling + 0.1*np.sin(self.phasors*2) # 混沌扰动项
self.phasors += delta_theta * 0.01
return np.abs(np.exp(1j*self.phasors).mean()) # 同步阶参数
class CriticalityController:
def __init__(self):
self.history = []
def adjust_coupling(self, sync_param, target=0.8):
"""基于神经胶质细胞启发的负反馈调节"""
error = sync_param - target
self.history.append(error)
integral = np.trapz(self.history[-10:])
return 1.5 / (1 + np.exp(3*integral)) # 类PID控制律
2. 相变检测定理
令群体序参量η(t)=∣1N∑eiθj∣\eta(t)=\left|\frac{1}{N}\sum e^{i\theta_j}\right|η(t)=N1∑eiθj,当功率谱满足:
S(f)∝f−α,α>1.5
S(f) \propto f^{-\alpha}, \alpha > 1.5
S(f)∝f−α,α>1.5
时系统处于自组织临界态,其中fff为时间序列波动频率
三、环境形变响应模型
1. 认知弹性张量
几何形变方程:
δgμν=Tμνcog−Λhμν+∇μϕ∇νϕ
\delta g_{\mu\nu} = T_{\mu\nu}^{cog} - \Lambda h_{\mu\nu} + \nabla_\mu \phi \nabla_\nu \phi
δgμν=Tμνcog−Λhμν+∇μϕ∇νϕ
式中TcogT^{cog}Tcog为认知能量-动量张量,ϕ\phiϕ表示环境信息势场
2. 适应性重配准算法
class CognitiveManifold:
def __init__(self, embed_dim=3):
self.christoffel = np.zeros((embed_dim, embed_dim, embed_dim))
def parallel_transport(self, vector, delta_x):
"""执行张量场的李导数传输"""
return vector + np.einsum('ijk,j,k->i', self.christoffel, vector, delta_x)
class EnvironmentalDeformation:
def metric_learning(self, stress_energy):
# 使用爱因斯坦张量进行度规演化
einstein_tensor = 0.5*(stress_energy - 0.5*stress_energy.trace()*np.eye(3))
self.metric += 0.01 * einstein_tensor
3. 适应性收敛判据
双曲守恒律:
∇μTtotalμν=κJenvν
\nabla_\mu T^{\mu\nu}_{total} = \kappa J^\nu_{env}
∇μTtotalμν=κJenvν
其中JenvνJ^\nu_{env}Jenvν为环境信息流密度四维矢量,κ\kappaκ为认知粘性系数
环境交互的三重表征:
- 量子共振通道:Γres∝ℏωD\Gamma_{res} \propto \sqrt{\hbar \omega D}Γres∝ℏωD
- 流体力学极限:∂ρ∂t+∇⋅(ρv)=σ∇2μ\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) = \sigma \nabla^2 \mu∂t∂ρ+∇⋅(ρv)=σ∇2μ
- 拓扑缺陷生成:∮CAμdxμ=2πn(n∈Z)\oint_C A_\mu dx^\mu = 2\pi n \quad (n\in\mathbb{Z})∮CAμdxμ=2πn(n∈Z)
765

被折叠的 条评论
为什么被折叠?



