GSL曲线拟合2

#include <stdio.h>
#include <gsl/gsl_multifit.h>

#pragma comment(lib, "libgsl_d.lib")
#pragma comment(lib, "libgslcblas_d.lib")

int
main (int argc, char **argv)
{
  int i, n;
  double xi, yi, ei, chisq;
  gsl_matrix *X, *cov;
  gsl_vector *y, *w, *c;

  if (argc != 2)
    {
      fprintf (stderr,"usage: fit n < data\n");
      exit (-1);
    }

  n = atoi (argv[1]);

  X = gsl_matrix_alloc (n, 3);
  y = gsl_vector_alloc (n);
  w = gsl_vector_alloc (n);

  c = gsl_vector_alloc (3);
  cov = gsl_matrix_alloc (3, 3);

  for (i = 0; i < n; i++)
    {
      int count = fscanf (stdin, "%lg %lg %lg",
                          &xi, &yi, &ei);

      if (count != 3)
        {
          fprintf (stderr, "error reading file\n");
          exit (-1);
        }

      printf ("%g %g +/- %g\n", xi, yi, ei);
      
      gsl_matrix_set (X, i, 0, 1.0);
      gsl_matrix_set (X, i, 1, xi);
      gsl_matrix_set (X, i, 2, xi*xi);
      
      gsl_vector_set (y, i, yi);
      gsl_vector_set (w, i, 1.0/(ei*ei));
    }

  {
    gsl_multifit_linear_workspace * work 
      = gsl_multifit_linear_alloc (n, 3);
    gsl_multifit_wlinear (X, w, y, c, cov,
                          &chisq, work);
    gsl_multifit_linear_free (work);
  }

#define C(i) (gsl_vector_get(c,(i)))
#define COV(i,j) (gsl_matrix_get(cov,(i),(j)))

  {
    printf ("# best fit: Y = %g + %g X + %g X^2\n", 
            C(0), C(1), C(2));

    printf ("# covariance matrix:\n");
    printf ("[ %+.5e, %+.5e, %+.5e  \n",
               COV(0,0), COV(0,1), COV(0,2));
    printf ("  %+.5e, %+.5e, %+.5e  \n", 
               COV(1,0), COV(1,1), COV(1,2));
    printf ("  %+.5e, %+.5e, %+.5e ]\n", 
               COV(2,0), COV(2,1), COV(2,2));
    printf ("# chisq = %g\n", chisq);
  }
  return 0;
}

GSL(GNU Scientific Library)提供了最小二乘曲线拟合的功能,通过该功能可以根据给定的数据点,找到最符合数据的曲线模型。 最小二乘曲线拟合是一种常用的数据处理方法,旨在通过多项式、指数函数或其他数学模型,找到一个最优的拟合曲线,以描述数据的趋势或规律。在实际应用中,最小二乘曲线拟合常用于数据分析、信号处理、图像处理等领域。 使用GSL进行最小二乘曲线拟合的步骤如下: 1. 导入GSL并初始化拟合模型参数,例如选择多项式拟合模型的阶数。 2. 提供待拟合的数据点,包括横坐标和纵坐标。 3. 调用GSL提供的函数,传入数据点和拟合模型参数,进行曲线拟合计算。 4. 根据计算结果,得到最优的拟合曲线模型的参数,例如多项式的系数。 5. 根据得到的拟合曲线模型参数,可以进行预测或者进一步分析。 需要注意的是,使用最小二乘曲线拟合时,可能会遇到过拟合或欠拟合的问题。过拟合指的是拟合曲线过于复杂,过度拟合了数据的噪声;欠拟合则是拟合曲线过于简单,无法很好地描述数据的特征。为了避免这些问题,选择合适的拟合模型和拟合参数非常重要。 总之,GSL最小二乘曲线拟合功能提供了一种方便、快捷和可靠的方法,用于对给定数据点进行最优曲线拟合。这种拟合方法在科学研究和工程实践中具有广泛的应用前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值