Attention机制与Self-Attention机制的区别

本文深入探讨了Attention机制及其变种Self-Attention的工作原理,对比了两者在Encoder-Decoder模型中的应用差异。传统Attention机制依赖于Source和Target间的交互,而Self-Attention则专注于Source或Target内部元素的相互作用。
部署运行你感兴趣的模型镜像

       本文主要讲解Attention机制与Self-Attention机制的区别,默认读者已经了解过Attention、Self-Attention、Transformer、seq2seq model。

       传统的Attention机制在一般任务的Encoder-Decoder model中,输入Source和输出Target内容是不一样的,比如对于英-中机器翻译来说,Source是英文句子,Target是对应的翻译出的中文句子,Attention机制发生在Target的元素Query和Source中的所有元素之间。简单的讲就是Attention机制中的权重的计算需要Target来参与的,即在Encoder-Decoder model中Attention权值的计算不仅需要Encoder中的隐状态而且还需要Decoder 中的隐状态。

       而Self Attention顾名思义,指的不是Target和Source之间的Attention机制,而是Source内部元素之间或者Target内部元素之间发生的Attention机制,也可以理解为Target=Source这种特殊情况下的注意力计算机制。例如在Transformer中在计算权重参数时将文字向量转成对应的KQV,只需要在Source处进行对应的矩阵操作,用不到Target中的信息。

您可能感兴趣的与本文相关的镜像

Seed-Coder-8B-Base

Seed-Coder-8B-Base

文本生成
Seed-Coder

Seed-Coder是一个功能强大、透明、参数高效的 8B 级开源代码模型系列,包括基础变体、指导变体和推理变体,由字节团队开源

评论 2
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值