[Place 30-99] Placer failed with error: ‘There are more instances than sites for type STARTUP‘解决方案

本文讲述了在工程实践中遇到的问题,涉及模块顶层输出问题。通过将STARTUPE2原语从内部分离到外部选择模块,解决了模块实例化后的多重输出冲突。通过实例和Xilinx官方社区的解决方案,展示了如何调整模块结构以确保正确综合和布线生成bit流。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在工程中遇到的问题

百度查了很多方法,大致是说,在实例化多个模块的时候顶层没有输出,但是工程里面有输出,修改之后仍然存在问题。上Xilinx官网查询。Xilinx Customer Community如下

大致是把这个原语放到多个例化的模块的外面去。

解决过程

本来是这个原语在emif接口模块。

STARTUPE2 STARTUPE2_inst (
	.CFGMCLK(CFGMCLK),			// 1-bit output: Configuration internal oscillator clock output 65MHz.
	.EOS(o_rst_n)				// 1-bit output: Active high output signal indicating the End Of Startup. 
);

我在外层的选择模块例化了多个接口模块

 

导致出现了多个原语,此时把他放到选择模块中,综合,布线,生成bit流均正常。

标题

tao@thp:~/文档/PyTorch_Practice/lesson2/rmb_classification$ tensorboard --logdir=lesson5/runs 2025-03-25 19:57:40.459192: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. 2025-03-25 19:57:40.459794: I external/local_xla/xla/tsl/cuda/cudart_stub.cc:32] Could not find cuda drivers on your machine, GPU will not be used. 2025-03-25 19:57:40.461640: I external/local_xla/xla/tsl/cuda/cudart_stub.cc:32] Could not find cuda drivers on your machine, GPU will not be used. 2025-03-25 19:57:40.466451: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:467] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered WARNING: All log messages before absl::InitializeLog() is called are written to STDERR E0000 00:00:1742903860.474475 9404 cuda_dnn.cc:8579] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered E0000 00:00:1742903860.476797 9404 cuda_blas.cc:1407] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered W0000 00:00:1742903860.483264 9404 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once. W0000 00:00:1742903860.483289 9404 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once. W0000 00:00:1742903860.483292 9404 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once. W0000 00:00:1742903860.483294 9404 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once. 2025-03-25 19:57:40.485439: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. To enable the following instructions: AVX2 AVX512F AVX512_VNNI AVX512_BF16 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. E0000 00:00:1742903861.655321 9404 cuda_executor.cc:1228] INTERNAL: CUDA Runtime error: Failed call to cudaGetRuntimeVersion: Error loading CUDA libraries. GPU will not be used.: Error loading CUDA libraries. GPU will not be used. W0000 00:00:1742903861.664941 9404 gpu_device.cc:2341] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... NOTE: Using experimental fast data loading logic. To disable, pass "--load_fast=false" and report issues on GitHub. More details: https://github.com/tensorflow/tensorboard/issues/4784 Serving TensorBoard on localhost; to expose to the network, use a proxy or pass --bind_all TensorBoard 2.19.0 at http://localhost:6006/ (Press CTRL+C to quit) 这里输入对应的网址打不开
03-26
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值