设α=sin(18∘)\alpha=\sin(18^\circ)α=sin(18∘)是整系数三次多项式f(x)=ax3+bx+1f(x)=ax^3+bx+1f(x)=ax3+bx+1的一个根,其中a>0a>0a>0. 求a,ba, ba,b.
解:因为α=cos(72∘)\alpha=\cos(72^\circ)α=cos(72∘),如果知道2α=e2π−1/5+e−2π−1/52\alpha=e^{2\pi \sqrt{-1}/5} + e^{-2\pi \sqrt{-1}/5}2α=e2π−1/5+e−2π−1/5在Q\mathbb{Q}Q上的极小多项式是x2+x−1x^2+x-1x2+x−1, 那么α\alphaα在Q\mathbb{Q}Q上的极小多项式就是4x2+2x−14x^2+2x-14x2+2x−1. 又设f(x)=(mx+n)(4x2+2x−1)=ax3+bx+1f(x)=(mx+n)(4x^2+2x-1)=ax^3+bx+1f(x)=(mx+n)(4x2+2x−1)=ax3+bx+1, 就能求出m=2,n=−1,a=8,b=−4m=2, n=-1, a=8, b=-4m=2,n=−1,a=8,b=−4.
如果用三角函数,那么考虑β=sin(72∘)=cos(18∘)\beta = \sin(72^\circ)=\cos(18^\circ)β=sin(72∘)=cos(18∘), 则
β=2sin(36∘)cos(36∘)=4sin(18∘)cos(18∘)(1−2sin2(18∘))\beta=2\sin(36^\circ) \cos(36^\circ) = 4\sin(18^\circ) \cos(18^\circ) \big(1-2\sin^2(18^\circ) \big)β=2sin(36∘)cos(36∘)=4sin(18∘)cos(18∘)(1−2sin2(18∘)), 即1=4α(1−2α2)1=4\alpha (1-2\alpha^2)1=4α(1−2α2), 即8α3−4α+1=08\alpha^3 - 4\alpha + 1=08α3−4α+1=0. 由于多项式8x3−4x+1=(2x−1)(4x2+2x−1)8x^3-4x+1=(2x-1)(4x^2+2x-1)8x3−4x+1=(2x−1)(4x2+2x−1), 只要能证明2α≠12\alpha \neq 12α=1,就知道f(x)=8x3−4x+1f(x)=8x^3-4x+1f(x)=8x3−4x+1, 为此只需证明α\alphaα不是有理数. 此处省略.