UVA - 387 A Puzzling Problem(回溯)

本文详细介绍了如何通过回溯算法解决拼图问题,目标是在限定的拼图数量下,尝试组合形成一个完整的4×4正方形。通过输入指定的拼图形状和数量,程序将输出所有可能的解决方案之一,或者报告无法形成正方形的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


 A Puzzling Problem 

The goal of this problem is to write a program which will take from 1 to 5 puzzle pieces such as those shown below and arrange them, if possible, to form a square. An example set of pieces is shown here.

The pieces cannot be rotated or flipped from their original orientation in an attempt to form a square from the set. All of the pieces must be used to form the square. There may be more than one possible solution for a set of pieces, and not every arrangement will work even with a set for which a solution can be found. Examples using the above set of pieces are shown here.

Input

The input file for this program contains several puzzles (i.e. sets of puzzle pieces) to be solved. The first line of the file is the number of pieces in the first puzzle. Each piece is then specified by listing a single line with two integers, the number of rows and columns in the piece, followed by one or more lines which specify the shape of the piece. The shape specification consists of `0' and `1' characters, with the `1' characters indicating the solid shape of the puzzle (the `0' characters are merely placeholders). For example, piece `A' above would be specified as follows:

2 3
111
101

The pieces should be numbered by the order they are encountered in the puzzle. That is, the first piece in a puzzle is piece #1, the next is piece #2, etc. All pieces may be assumed to be valid and no larger than 4 rows by 4 columns.

The line following the final line of the last piece contains the number of pieces in the next puzzle, again followed by the puzzle pieces and so on. The end of the input file is indicated by a zero in place of the number of puzzle pieces.

Output

Your program should report a solution, if one is possible, in the format shown by the examples below. A 4-row by 4-column square should be created, with each piece occupying its location in the solution. The solid portions of piece #1 should be replaced with `1' characters, of piece #2 with `2' characters, etc. The solutions for each puzzle should be separated by a single blank line.

If there are multiple solutions, any of them is acceptable. For puzzles which have no possible solution simply report ``No solution possible''.

Sample Input

4
2 3
111
101
4 2
01
01
11
01
2 1
1
1
3 2
10
10
11
4
1 4
1111
1 4
1111
1 4
1111
2 3
111
001
5
2 2
11
11
2 3
111
100
3 2
11
01
01
1 3
111
1 1
1
0

Sample Output

1112
1412
3422
3442

No solution possible

1133
1153
2223
2444

题目大意:在二维平面上放木块拼图,问能用所有的拼图把4×4的平面拼满,注意拼图不能旋转,翻转,而且所有的拼图都要用到。


解析:
我写代码能力太差了,这题做了一整天才完成。直接dfs回溯就行。
直接按照顺序取木块,平移,放入,到取完最后一个木块时,即表示能组成一个满4*4的矩型。
但是请注意所有的木块都要用到,所以当总的面积不等于16时可以不用考虑,因为不可能拼出4×4的平面。


#include <stdio.h>
#include <string.h>
using namespace std;
const int N = 6;

struct Piece{
	int r,c;
	int grid[N][N];
}p[N];

int vis[N][N];
int n;
bool ok;

void init() {
	memset(vis,0,sizeof(vis));
	memset(p,0,sizeof(p));
}

void dfs(int cur) {
	if(cur == n+1) {
		ok = true;
		return ;
	} 
	if(ok) {
		return ;
	}
	for(int i = 0; i <= 4 - p[cur].r; i++) {
		for(int j = 0; j <= 4 - p[cur].c; j++) {
			bool flag = true;
			for(int y = 0; y < p[cur].r; y++) {
				for(int x = 0; x < p[cur].c; x++) {
					if(flag && !vis[i+y][j+x] && p[cur].grid[y][x]) {
						vis[i+y][j+x] = cur;
					}else if(vis[i+y][j+x] && p[cur].grid[y][x]) {
						flag = false;
					}
				}
			}
			if(flag) {
				dfs(cur+1);
			}
			if(ok) {
				return ;
			}
			for(int y = 0; y < 4; y++) {
				for(int x = 0; x < 4; x++) {
					if(vis[y][x] == cur) {
						vis[y][x] = 0;
					}
				}
			}
		}
	}
}

int main() {
	int cas = 0;
	while(scanf("%d",&n) != EOF && n) {
		init();
		int sum = 0;
		for(int i = 1; i <= n; i++) {
			scanf("%d%d",&p[i].r,&p[i].c);
			for(int j = 0; j < p[i].r; j++) {
				for(int k = 0; k < p[i].c; k++) {
					scanf("%1d",&p[i].grid[j][k]);
					sum += p[i].grid[j][k];
				}
			}
		}
		if(cas++) {
			printf("\n");
		}
		ok = false;
		if(sum == 16) {
			dfs(1);
		}
		if(ok) {
			for(int i = 0; i < 4; i++) {
				for(int j = 0; j < 4; j++) {
					printf("%d",vis[i][j]);
				}
				printf("\n");
			}
		}else{
			printf("No solution possible\n");	
		}
	}
	return 0;
}

Battle Scars提到的是越南战争时期退伍军人就业率下降和残疾津贴领取人数增加的现象。这个现象通常与战时创伤、长期健康影响以及战争对个人职业生涯的影响有关。退伍军人在经历了战场压力和身体损伤后,可能会面临难以重返工作岗位的问题。 关于代码实现,这个问题并不是直接编程问题,而是社会学数据处理和分析的一个示例。如果你想要模拟或研究这个现象,你可以使用编程语言如Python来进行数据分析,例如: 1. **数据获取**:通过API或其他数据源获取有关越南战争退伍军人就业状况和残疾津贴的数据集。 ```python import pandas as pd data = pd.read_csv('vietnam_war_veterans_data.csv') ``` 2. **数据清洗和预处理**:清理缺失值、异常值,以及将描述性信息转换成可用于分析的形式。 ```python data.dropna(inplace=True) data['disability_receipt'] = data['disability_receipt'].astype(int) ``` 3. **统计分析**:计算就业率变化和残疾津贴比例上升。 ```python employment_rate = data['employment_status'].mean() disabled_ratio = data['disability_receipt'].mean() / len(data) ``` 4. **可视化**:创建图表展示趋势,比如时间序列图或柱状图。 ```python import matplotlib.pyplot as plt plt.plot(data['year'], data['employment_rate'], label='Employment Rate') plt.plot(data['year'], data['disability_receipt'], label='Disability Receipts') plt.xlabel('Year') plt.ylabel('Percentage') plt.legend() plt.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值