Datawhale|编程第6期-Test6

1、实现有向图、无向图、有权图、无权图的邻接矩阵和邻接表表示方法

#有向图,连接表,有权值
class DirectedGraph(object):
    def __init__(self,d):
        self.__edges = {}
        if isinstance(d,dict):
            self.__graph = d
        else:
            self.__graph = dict()
            raise KeyError("NO Input")

    def add(self,f,e):
    	self.__graph[f].append(e)
    	print(self.__graph)

    def delete(self,f,e):
    	self.__graph[f].remove(e)
    	print(self.__graph)


    def __generatePath(self,graph,path,end,results):
        #深度优先搜索 一条一条路径的找
        curret = path[-1]
        if curret == end:
            results.append(path)
        else:
            for n in graph[curret]:
                #找到从当前点出发指向的点
                if n not in path:
                    self.__generatePath(graph,path+[n],end,results)

    def searchPath(self,start,end):
        self.__results = []
        self.__generatePath(self.__graph,[start],end,self.__results)
        self.__results.sort(key=lambda  x:len(x))   
        #按所有路径的长度进行排序
        print('The path from ',self.__results[0][0],'to',self.__results[0][-1],'is:')
        for path in self.__results:
            print(path)
    def add_edge(self,front,back,value):
        self.__edges[(front,back)]=value

    def show(self):
        print(self.__graph,'\n',self.__edges)

if __name__ == '__main__':
    d={'A':['B','C','D'],
        'B':['E'],
        'C':['D','F'],
        'D':['B','E','G'],
        'E':['D'],
        'F':['D','G'],
        'G':['E']}

    e = {
    ("A","B"):1,
    ("A","C"):2,
    ("A","D"):3,
    ("B","E"):4,    
    ("C","D"):5,    
    ("C","F"):6,    
    ("D","B"):7,
    ("D","E"):8,    
    ("D","G"):9,    
    ("E","D"):10,
    ("F","D"):11,    
    ("F","G"):12,
    ("G","E"):13
    }

    g=DirectedGraph(d)
    for i in e.keys():
        g.add_edge(i[0],i[1],e[i])
    g.show()
    
    # g.add_edge()
    g.add('A','E')
    g.delete("A","E")
    g.searchPath('A','E')

    '''result
    The path from  A to E is:
    ['A', 'B', 'E']
    ['A', 'D', 'E']
    ['A', 'C', 'D', 'E']
    ['A', 'D', 'B', 'E']
    ['A', 'D', 'G', 'E']
    ['A', 'C', 'D', 'B', 'E']
    ['A', 'C', 'D', 'G', 'E']
    ['A', 'C', 'F', 'D', 'E']
    ['A', 'C', 'F', 'G', 'E']
    ['A', 'C', 'F', 'D', 'B', 'E']
    ['A', 'C', 'F', 'D', 'G', 'E']
    '''

 

 

2、实现图的深度优先搜索、广度优先搜索

def BFS(graph,s):
    queue=[]
    queue.append(s)
    seen=set()#哈希set
    seen.add(s)
    parent={s:None}
    #parent[w]=v 表示w的前一个点是v
    while(len(queue)>0):
        vertex=queue.pop(0)
        
        nodes=graphs[vertex]
        
        for w in nodes:
            if  w not in seen :
                queue.append(w)
                seen.add(w)
                parent[w]=vertex
        print(vertex)
    return parent
def DFS(graph,s):
    stack=[]
    stack.append(s)
    seen=set()#哈希set
    seen.add(s)
    while(len(stack)>0):
        vertex=stack.pop()
        nodes=graphs[vertex]
        for w in nodes:
            if  w not in seen :
                stack.append(w)
                seen.add(w)
        print(vertex)
       

 

3、实现 Dijkstra 算法、A* 算法

def dijkstra(graph,s):
    pqueue=[]
    heapq.heappush(pqueue,(0,s))    
    seen=set()#哈希set
    #
    parent={s:None}
    
    distance=init_distance(graph,s)#距离起点的距离
    #parent[w]=v 表示w的前一个点是v
    while(len(pqueue)>0):
        
        pair=heapq.heappop(pqueue)
        dist=pair[0]
        vertex=pair[1]
        seen.add(vertex)
        nodes=graph[vertex].keys()
               
        for w in nodes:
            if  w not in seen :
                if dist+graph[vertex][w]<distance[w]:
                    heapq.heappush(pqueue,(dist+graph[vertex][w],w))
                    parent[w]=vertex
                    distance[w]=dist+graph[vertex][w]
    return parent,distance

 

A*算法还在研究

4、实现拓扑排序的 Kahn 算法、DFS 算法

 

def toposort(graph):
    in_degrees = dict((u,0) for u in graph) #初始化所有顶点入度为0
    vertex_num = len(in_degrees)
    for u in graph:
        for v in graph[u]:
          in_degrees[v] += 1  #计算每个顶点的入度
    Q = [u for u in in_degrees if in_degrees[u] == 0] # 筛选入度为0的顶点
    Seq = []  # 排序的列表
    while Q:
        # 方法1 
        u = Q.pop()  #默认从最后一个删除
        # 方法2
        # u = Q[0]
        # Q = Q[1:]

        Seq.append(u)
        for v in graph[u]:
            in_degrees[v] -= 1  #删除的节点连接的节点入度减一
            if in_degrees[v] == 0:
                Q.append(v)   #再次筛选入度为0的顶点
    if len(Seq) == vertex_num:  #如果循环结束后存在非0入度的顶点说明图中有环,不存在拓扑排序
        return Seq
    else:
        print("there's a circle.")

G = {
 'a':'bc',
 'b':'de',
 'c':'f',
 'd':'g',
 'e':'' ,
 'f':'',
 'g':''
}
print(toposort(G))   
#方法1 ['a', 'c', 'f', 'b', 'e', 'd', 'g']
#方法2 ['a', 'b', 'c', 'd', 'e', 'f', 'g']

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值