仿照布尔代数的一套三值代数系统

完整定义一套严格的三值代数系统,仿照布尔代数的结构但扩展到三个值。

1. 三值代数系统定义

基本集合和值

"""
三值代数系统定义
仿照布尔代数结构,但值域扩展到三个值
"""
from enum import Enum
from typing import List, Tuple

class TernaryValue(Enum):
    """三值系统的三个基本值"""
    FALSE = 0    # 假
    UNKNOWN = 1  # 未知/不确定
    TRUE = 2     # 真
    
    def __str__(self):
        return ["F", "U", "T"][self.value]

基本运算定义

class TernaryAlgebra:
    """三值代数系统,包含基本运算和定律"""
    
    @staticmethod
    def ternary_not(a: TernaryValue) -> TernaryValue:
        """非运算(否定)"""
        truth_table = {
            TernaryValue.FALSE: TernaryValue.TRUE,
            TernaryValue.UNKNOWN: TernaryValue.UNKNOWN,  # 未知的否定仍是未知
            TernaryValue.TRUE: TernaryValue.FALSE
        }
        return truth_table[a]
    
    @staticmethod
    def ternary_and(a: TernaryValue, b: TernaryValue) -> TernaryValue:
        """与运算(合取)- 使用Kleene三值逻辑定义"""
        # 真值表实现
        if a == TernaryValue.FALSE or b == TernaryValue.FALSE:
            return TernaryValue.FALSE
        elif a == TernaryValue.TRUE and b == TernaryValue.TRUE:
            return TernaryValue.TRUE
        else:
            return TernaryValue.UNKNOWN
    
    @staticmethod
    def ternary_or(a: TernaryValue, b: TernaryValue) -> TernaryValue:
        """或运算(析取)- 使用Kleene三值逻辑定义"""
        if a == TernaryValue.TRUE or b == TernaryValue.TRUE:
            return TernaryValue.TRUE
        elif a == TernaryValue.FALSE and b == TernaryValue.FALSE:
            return TernaryValue.FALSE
        else:
            return TernaryValue.UNKNOWN
    
    @staticmethod
    def ternary_xor(a: TernaryValue, b: TernaryValue) -> TernaryValue:
        """异或运算"""
        and_result = TernaryAlgebra.ternary_and(a, b)
        or_result = TernaryAlgebra.ternary_or(a, b)
        not_and = TernaryAlgebra.ternary_not(and_result)
        return TernaryAlgebra.ternary_and(or_result, not_and)
    
    @staticmethod
    def ternary_imply(a: TernaryValue, b: TernaryValue) -> TernaryValue:
        """蕴含运算 (a → b) = ¬a ∨ b"""
        not_a = TernaryAlgebra.ternary_not(a)
        return TernaryAlgebra.ternary_or(not_a, b)
    
    @staticmethod
    def ternary_equiv(a: TernaryValue, b: TernaryValue) -> TernaryValue:
        """等价运算 (a ≡ b) = (a → b) ∧ (b → a)"""
        a_implies_b = TernaryAlgebra.ternary_imply(a, b)
        b_implies_a = TernaryAlgebra.ternary_imply(b, a)
        return TernaryAlgebra.ternary_and(a_implies_b, b_implies_a)

2. 完整真值表

class TruthTableGenerator:
    """生成和显示三值逻辑的真值表"""
    
    @staticmethod
    def generate_truth_table(operation, operation_name: str):
        """生成指定运算的真值表"""
        values = [TernaryValue.FALSE, TernaryValue.UNKNOWN, TernaryValue.TRUE]
        
        print(f"\n{operation_name} 真值表:")
        print("a\\b |  F   U   T")
        print("----+------------")
        
        for a in values:
            row = f" {a}  |"
            for b in values:
                result = operation(a, b)
                row += f"  {result} "
            print(row)
    
    @staticmethod
    def generate_unary_truth_table(operation, operation_name: str):
        """生成一元运算的真值表"""
        values = [TernaryValue.FALSE, TernaryValue.UNKNOWN, TernaryValue.TRUE]
        
        print(f"\n{operation_name} 真值表:")
        print("a | result")
        print("--+-------")
        for a in values:
            result = operation(a)
            print(f"{a} |   {result}")

# 显示所有基本运算的真值表
def display_all_truth_tables():
    """显示完整的真值表集合"""
    print("=== 三值代数系统完整真值表 ===")
    
    TruthTableGenerator.generate_unary_truth_table(
        TernaryAlgebra.ternary_not, "NOT"
    )
    
    TruthTableGenerator.generate_truth_table(
        TernaryAlgebra.ternary_and, "AND"
    )
    
    TruthTableGenerator.generate_truth_table(
        TernaryAlgebra.ternary_or, "OR"
    )
    
    TruthTableGenerator.generate_truth_table(
        TernaryAlgebra.ternary_xor, "XOR"
    )
    
    TruthTableGenerator.generate_truth_table(
        TernaryAlgebra.ternary_imply, "IMPLY"
    )
    
    TruthTableGenerator.generate_truth_table(
        TernaryAlgebra.ternary_equiv, "EQUIV"
    )

3. 代数定律验证

class TernaryLaws:
    """验证三值代数系统的代数定律"""
    
    @staticmethod
    def test_identity_laws():
        """恒等律验证"""
        print("\n=== 恒等律验证 ===")
        values = [TernaryValue.FALSE, TernaryValue.UNKNOWN, TernaryValue.TRUE]
        
        for a in values:
            # a ∧ T = a
            and_true = TernaryAlgebra.ternary_and(a, TernaryValue.TRUE)
            # a ∨ F = a  
            or_false = TernaryAlgebra.ternary_or(a, TernaryValue.FALSE)
            
            print(f"a={a}: a∧T={and_true}, a∨F={or_false}")
    
    @staticmethod
    def test_complement_laws():
        """补元律验证"""
        print("\n=== 补元律验证 ===")
        values = [TernaryValue.FALSE, TernaryValue.UNKNOWN, TernaryValue.TRUE]
        
        for a in values:
            # a ∧ ¬a = F
            and_complement = TernaryAlgebra.ternary_and(a, TernaryAlgebra.ternary_not(a))
            # a ∨ ¬a = T
            or_complement = TernaryAlgebra.ternary_or(a, TernaryAlgebra.ternary_not(a))
            
            print(f"a={a}: a∧¬a={and_complement}, a∨¬a={or_complement}")
    
    @staticmethod
    def test_commutative_laws():
        """交换律验证"""
        print("\n=== 交换律验证 ===")
        test_pairs = [
            (TernaryValue.FALSE, TernaryValue.TRUE),
            (TernaryValue.UNKNOWN, TernaryValue.TRUE),
            (TernaryValue.FALSE, TernaryValue.UNKNOWN)
        ]
        
        for a, b in test_pairs:
            and_ab = TernaryAlgebra.ternary_and(a, b)
            and_ba = TernaryAlgebra.ternary_and(b, a)
            or_ab = TernaryAlgebra.ternary_or(a, b)
            or_ba = TernaryAlgebra.ternary_or(b, a)
            
            print(f"a={a}, b={b}: AND交换: {and_ab}={'=' if and_ab == and_ba else '!'}{and_ba}")
            print(f"a={a}, b={b}: OR交换:  {or_ab}={'=' if or_ab == or_ba else '!'}{or_ba}")
    
    @staticmethod
    def test_associative_laws():
        """结合律验证"""
        print("\n=== 结合律验证 ===")
        a, b, c = TernaryValue.FALSE, TernaryValue.UNKNOWN, TernaryValue.TRUE
        
        # (a ∧ b) ∧ c = a ∧ (b ∧ c)
        left_and = TernaryAlgebra.ternary_and(
            TernaryAlgebra.ternary_and(a, b), c
        )
        right_and = TernaryAlgebra.ternary_and(
            a, TernaryAlgebra.ternary_and(b, c)
        )
        
        # (a ∨ b) ∨ c = a ∨ (b ∨ c)  
        left_or = TernaryAlgebra.ternary_or(
            TernaryAlgebra.ternary_or(a, b), c
        )
        right_or = TernaryAlgebra.ternary_or(
            a, TernaryAlgebra.ternary_or(b, c)
        )
        
        print(f"AND结合律: ({a}∧{b})∧{c} = {left_and}")
        print(f"          {a}∧({b}∧{c}) = {right_and}")
        print(f"          结果: {'相等' if left_and == right_and else '不相等'}")
        
        print(f"OR结合律:  ({a}∨{b})∨{c} = {left_or}")
        print(f"          {a}∨({b}∨{c}) = {right_or}")
        print(f"          结果: {'相等' if left_or == right_or else '不相等'}")
    
    @staticmethod
    def test_distributive_laws():
        """分配律验证"""
        print("\n=== 分配律验证 ===")
        a, b, c = TernaryValue.FALSE, TernaryValue.UNKNOWN, TernaryValue.TRUE
        
        # a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
        left_dist = TernaryAlgebra.ternary_and(
            a, TernaryAlgebra.ternary_or(b, c)
        )
        right_dist = TernaryAlgebra.ternary_or(
            TernaryAlgebra.ternary_and(a, b),
            TernaryAlgebra.ternary_and(a, c)
        )
        
        print(f"分配律: {a}∧({b}∨{c}) = {left_dist}")
        print(f"       ({a}∧{b})∨({a}∧{c}) = {right_dist}")
        print(f"       结果: {'成立' if left_dist == right_dist else '不成立'}")
    
    @staticmethod
    def test_de_morgans_laws():
        """德摩根定律验证"""
        print("\n=== 德摩根定律验证 ===")
        test_pairs = [
            (TernaryValue.FALSE, TernaryValue.TRUE),
            (TernaryValue.UNKNOWN, TernaryValue.UNKNOWN),
        ]
        
        for a, b in test_pairs:
            # ¬(a ∧ b) = ¬a ∨ ¬b
            left_dm1 = TernaryAlgebra.ternary_not(
                TernaryAlgebra.ternary_and(a, b)
            )
            right_dm1 = TernaryAlgebra.ternary_or(
                TernaryAlgebra.ternary_not(a),
                TernaryAlgebra.ternary_not(b)
            )
            
            # ¬(a ∨ b) = ¬a ∧ ¬b
            left_dm2 = TernaryAlgebra.ternary_not(
                TernaryAlgebra.ternary_or(a, b)
            )
            right_dm2 = TernaryAlgebra.ternary_and(
                TernaryAlgebra.ternary_not(a),
                TernaryAlgebra.ternary_not(b)
            )
            
            print(f"a={a}, b={b}:")
            print(f"  ¬({a}∧{b}) = {left_dm1}, ¬{a}∨¬{b} = {right_dm1} {'✓' if left_dm1 == right_dm1 else '✗'}")
            print(f"  ¬({a}∨{b}) = {left_dm2}, ¬{a}∧¬{b} = {right_dm2} {'✓' if left_dm2 == right_dm2 else '✗'}")

4. 三值逻辑应用示例

class TernaryApplication:
    """三值代数的实际应用示例"""
    
    @staticmethod
    def database_query_example():
        """数据库三值逻辑查询示例"""
        print("\n=== 数据库三值逻辑应用 ===")
        
        # 模拟数据库记录:age字段可能有NULL值
        records = [
            {"name": "Alice", "age": TernaryValue.TRUE},    # 年龄已知
            {"name": "Bob", "age": TernaryValue.UNKNOWN},   # 年龄未知
            {"name": "Charlie", "age": TernaryValue.FALSE}  # 无年龄信息
        ]
        
        # 查询:年龄已知或未知的记录
        query_condition = lambda age: TernaryAlgebra.ternary_or(
            age, TernaryValue.UNKNOWN
        )
        
        print("查询结果:")
        for record in records:
            satisfies = query_condition(record["age"])
            print(f"  {record['name']}: 满足条件 = {satisfies}")
    
    @staticmethod
    def circuit_design_example():
        """三值电路设计示例"""
        print("\n=== 三值电路设计 ===")
        
        # 三值信号的逻辑组合
        input_a = TernaryValue.TRUE
        input_b = TernaryValue.UNKNOWN
        input_c = TernaryValue.FALSE
        
        # 复杂逻辑表达式: (A ∧ B) ∨ ¬C
        circuit_output = TernaryAlgebra.ternary_or(
            TernaryAlgebra.ternary_and(input_a, input_b),
            TernaryAlgebra.ternary_not(input_c)
        )
        
        print(f"电路输入: A={input_a}, B={input_b}, C={input_c}")
        print(f"电路输出: (A∧B)∨¬C = {circuit_output}")
    
    @staticmethod
    def uncertainty_reasoning():
        """不确定性推理示例"""
        print("\n=== 不确定性推理 ===")
        
        # 知识库中的事实(可能不确定)
        fact_rain = TernaryValue.UNKNOWN  # 可能下雨
        fact_wet_ground = TernaryValue.TRUE  # 地面是湿的
        
        # 推理:如果下雨,那么地面是湿的
        implication = TernaryAlgebra.ternary_imply(fact_rain, fact_wet_ground)
        
        print(f"事实: 下雨={fact_rain}, 地面湿={fact_wet_ground}")
        print(f"推理: 下雨→地面湿 = {implication}")
        
        if implication == TernaryValue.TRUE:
            print("结论: 推理成立")
        elif implication == TernaryValue.UNKNOWN:
            print("结论: 推理不确定")
        else:
            print("结论: 推理不成立")

5. 主演示程序

def main():
    """主演示函数"""
    print("三值代数系统完整演示")
    print("=" * 50)
    
    # 1. 显示真值表
    display_all_truth_tables()
    
    # 2. 验证代数定律
    TernaryLaws.test_identity_laws()
    TernaryLaws.test_complement_laws() 
    TernaryLaws.test_commutative_laws()
    TernaryLaws.test_associative_laws()
    TernaryLaws.test_distributive_laws()
    TernaryLaws.test_de_morgans_laws()
    
    # 3. 应用示例
    TernaryApplication.database_query_example()
    TernaryApplication.circuit_design_example()
    TernaryApplication.uncertainty_reasoning()
    
    print("\n" + "=" * 50)
    print("三值代数系统演示完成")

if __name__ == "__main__":
    main()

运行结果

三值代数系统完整演示
==================================================
=== 三值代数系统完整真值表 ===

NOT 真值表:
a | result
--+-------
F |   T
U |   U
T |   F

AND 真值表:
a\b |  F   U   T
----+------------
 F  |  F   F   F 
 U  |  F   U   U 
 T  |  F   U   T 

OR 真值表:
a\b |  F   U   T
----+------------
 F  |  F   U   T 
 U  |  U   U   T 
 T  |  T   T   T 

XOR 真值表:
a\b |  F   U   T
----+------------
 F  |  F   U   T 
 U  |  U   U   U 
 T  |  T   U   F 

IMPLY 真值表:
a\b |  F   U   T
----+------------
 F  |  T   T   T 
 U  |  U   U   T 
 T  |  F   U   T 

EQUIV 真值表:
a\b |  F   U   T
----+------------
 F  |  T   U   F 
 U  |  U   U   U 
 T  |  F   U   T 

=== 恒等律验证 ===
a=F: a∧T=F, a∨F=F
a=U: a∧T=U, a∨F=U
a=T: a∧T=T, a∨F=T

=== 补元律验证 ===
a=F: a∧¬a=F, a∨¬a=T
a=U: a∧¬a=U, a∨¬a=U
a=T: a∧¬a=F, a∨¬a=T

=== 交换律验证 ===
a=F, b=T: AND交换: F==F
a=F, b=T: OR交换:  T==T
a=U, b=T: AND交换: U==U
a=U, b=T: OR交换:  T==T
a=F, b=U: AND交换: F==F
a=F, b=U: OR交换:  U==U

=== 结合律验证 ===
AND结合律: (F∧U)∧T = F
          F∧(U∧T) = F
          结果: 相等
OR结合律:  (F∨U)∨T = T
          F∨(U∨T) = T
          结果: 相等

=== 分配律验证 ===
分配律: F∧(U∨T) = F
       (F∧U)∨(F∧T) = F
       结果: 成立

=== 德摩根定律验证 ===
a=F, b=T:
  ¬(F∧T) = T, ¬F∨¬T = T ✓
  ¬(F∨T) = F, ¬F∧¬T = F ✓
a=U, b=U:
  ¬(U∧U) = U, ¬U∨¬U = U ✓
  ¬(U∨U) = U, ¬U∧¬U = U ✓

=== 数据库三值逻辑应用 ===
查询结果:
  Alice: 满足条件 = T
  Bob: 满足条件 = U
  Charlie: 满足条件 = U

=== 三值电路设计 ===
电路输入: A=T, B=U, C=F
电路输出: (A∧B)∨¬C = T

=== 不确定性推理 ===
事实: 下雨=U, 地面湿=T
推理: 下雨→地面湿 = T
结论: 推理成立

==================================================
三值代数系统演示完成

6. 系统特性总结

这套三值代数系统具有以下特性:

保持的布尔代数性质:

  • 交换律: a ∧ b = b ∧ a, a ∨ b = b ∨ a

  • 结合律: (a ∧ b) ∧ c = a ∧ (b ∧ c)

  • 分配律: a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

  • 德摩根定律: ¬(a ∧ b) = ¬a ∨ ¬b

三值特有的性质:

  • 排中律不成立: a ∨ ¬a 不一定为 TRUE(当a=UNKNOWN时)

  • 矛盾律不成立: a ∧ ¬a 不一定为 FALSE(当a=UNKNOWN时)

  • 保持信息性: UNKNOWN值在运算中可能保持或传播

应用价值:

  1. 数据库系统: 处理NULL值的三值逻辑

  2. 硬件设计: 三值逻辑电路

  3. 人工智能: 不确定性推理

  4. 形式验证: 三值模型检测

这套系统完整地扩展了布尔代数,为处理不确定性和部分信息提供了严格的数学基础。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值