多值计算机编译器的AI Agent Demo

项目结构

multi_value_compiler/
├── ai_agent/
│   ├── __init__.py
│   ├── code_generator.py
│   ├── optimizer.py
│   └── tester.py
├── compiler/
│   ├── __init__.py
│   ├── lexer.py
│   ├── parser.py
│   ├── semantic_analyzer.py
│   └── code_generator.py
├── hardware/
│   ├── __init__.py
│   ├── triple_machine.py
│   └── simulator.py
├── examples/
│   └── demo.tri
├── main.py
└── requirements.txt

完整代码实现

1. 项目配置文件

requirements.txt

numpy
transformers
torch
tabulate

2. AI Agent 核心模块

ai_agent/init.py

class AIAgent:
    def __init__(self):
        self.knowledge_base = {
            "trit_operations": {
                "AND": {
                    (0,0):0, (0,1):0, (0,'X'):0,
                    (1,0):0, (1,1):1, (1,'X'):'X',
                    ('X',0):0, ('X',1):'X', ('X','X'):'X'
                },
                "OR": {
                    (0,0):0, (0,1):1, (0,'X'):'X',
                    (1,0):1, (1,1):1, (1,'X'):1,
                    ('X',0):'X', ('X',1):1, ('X','X'):'X'
                },
                "NOT": {0:1, 1:0, 'X':'X'}
            },
            "optimization_rules": [
                "eliminate_dead_code",
                "constant_propagation", 
                "strength_reduction"
            ]
        }
    
    def query(self, question):
        """简单的问答系统"""
        if "三值逻辑" in question or "trit" in question:
            return "三值逻辑使用0,1,X三个值,其中X代表未知或不确定状态"
        elif "优化" in question:
            return f"可用的优化规则: {', '.join(self.knowledge_base['optimization_rules'])}"
        else:
            return "我了解多值计算机编译器的相关知识,请提问"

ai_agent/code_generator.py

import random

class AICodeGenerator:
    def __init__(self):
        self.templates = {
            "function": """
func {name}({params}) -> {return_type} {{
    {body}
}}
""",
            "if_else": """
if ({condition}) {{
    {then_block}
}} else {{
    {else_block}
}}
"""
        }
    
    def generate_test_case(self, complexity=1):
        """生成测试用例"""
        test_cases = [
            "func main() -> trit { return 1; }",
            "func and_gate(a: trit, b: trit) -> trit { return a & b; }",
            "func complex_logic(a: trit, b: trit) -> trit { return (a | b) & ~a; }"
        ]
        return random.choice(test_cases[:complexity+1])
    
    def suggest_optimization(self, code):
        """提供代码优化建议"""
        suggestions = []
        if "return 1" in code and "main" in code:
            suggestions.append("简单常量返回可以进一步优化")
        if "&" in code and "|" in code:
            suggestions.append("复杂逻辑表达式可以应用布尔代数简化")
        return suggestions

ai_agent/optimizer.py

class AIOptimizer:
    def __init__(self):
        self.optimization_patterns = {
            "dead_code": [
                ("if (0) { ... }", "// 删除死代码块"),
                ("if (1) { ... }", "... // 简化条件")
            ],
            "constant_propagation": [
                ("a = 1; b = a & x;", "b = 1 & x; // 常量传播")
            ]
        }
    
    def optimize_ir(self, ir_code):
        """优化中间表示"""
        optimized = ir_code
        
        # 应用简单的优化规则
        if "MOV 1, result" in optimized and "RET result" in optimized:
            optimized = optimized.replace("MOV 1, result\nRET result", "RET 1")
        
        return optimized
    
    def suggest_instruction_selection(self, operation):
        """建议指令选择"""
        instruction_map = {
            "&": "TAND",
            "|": "TOR", 
            "~": "TNOT"
        }
        return instruction_map.get(operation, "UNKNOWN")

ai_agent/tester.py

import random

class AITester:
    def generate_test_cases(self, function_signature, num_cases=5):
        """为函数生成测试用例"""
        test_cases = []
        trit_values = [0, 1, 'X']
        
        for _ in range(num_cases):
            if "a: trit, b: trit" in function_signature:
                a = random.choice(trit_values)
                b = random.choice(trit_values)
                test_cases.append(f"({a}, {b})")
            else:
                test_cases.append("()")
        
        return test_cases
    
    def differential_test(self, source_code, reference_impl):
        """差分测试建议"""
        return f"""
// 建议的参考实现(C语言)
#include <stdio.h>
// {reference_impl}

// 在三值模拟器上运行编译后的代码进行比较
"""

3. 编译器核心模块

compiler/lexer.py

class Lexer:
    def __init__(self):
        self.keywords = {'func', 'return', 'if', 'else', 'trit'}
        self.operators = {'&', '|', '~', '=', '(', ')', '{', '}', ':', '->'}
    
    def tokenize(self, source_code):
        tokens = []
        lines = source_code.split('\n')
        
        for line_num, line in enumerate(lines, 1):
            chars = list(line)
            i = 0
            
            while i < len(chars):
                if chars[i].isspace():
                    i += 1
                    continue
                
                # 标识符和关键字
                if chars[i].isalpha():
                    identifier = []
                    while i < len(chars) and (chars[i].isalnum() or chars[i] == '_'):
                        identifier.append(chars[i])
                        i += 1
                    identifier = ''.join(identifier)
                    token_type = 'KEYWORD' if identifier in self.keywords else 'IDENTIFIER'
                    tokens.append((token_type, identifier, line_num))
                
                # 运算符
                elif chars[i] in self.operators:
                    tokens.append(('OPERATOR', chars[i], line_num))
                    i += 1
                
                # 数字字面量
                elif chars[i].isdigit():
                    number = []
                    while i < len(chars) and chars[i].isdigit():
                        number.append(chars[i])
                        i += 1
                    tokens.append(('NUMBER', ''.join(number), line_num))
                
                # 注释
                elif chars[i] == '/':
                    i += 1
                    break  # 简化处理,跳过注释
                else:
                    i += 1
        
        return tokens

compiler/parser.py

class Parser:
    def __init__(self, tokens):
        self.tokens = tokens
        self.pos = 0
    
    def current_token(self):
        return self.tokens[self.pos] if self.pos < len(self.tokens) else None
    
    def eat(self, expected_type=None, expected_value=None):
        token = self.current_token()
        if not token:
            return None
        
        if expected_type and token[0] != expected_type:
            raise SyntaxError(f"Expected {expected_type}, got {token[0]}")
        
        if expected_value and token[1] != expected_value:
            raise SyntaxError(f"Expected {expected_value}, got {token[1]}")
        
        self.pos += 1
        return token
    
    def parse(self):
        return self.parse_function()
    
    def parse_function(self):
        """解析函数定义"""
        self.eat('KEYWORD', 'func')
        func_name = self.eat('IDENTIFIER')[1]
        
        self.eat('OPERATOR', '(')
        params = self.parse_parameters()
        self.eat('OPERATOR', ')')
        
        self.eat('OPERATOR', '->')
        return_type = self.eat('IDENTIFIER')[1]
        
        body = self.parse_block()
        
        return {
            'type': 'function',
            'name': func_name,
            'parameters': params,
            'return_type': return_type,
            'body': body
        }
    
    def parse_parameters(self):
        params = []
        while self.current_token() and self.current_token()[1] != ')':
            if self.current_token()[0] == 'IDENTIFIER':
                param_name = self.eat('IDENTIFIER')[1]
                self.eat('OPERATOR', ':')
                param_type = self.eat('IDENTIFIER')[1]
                params.append({'name': param_name, 'type': param_type})
                
                if self.current_token() and self.current_token()[1] == ',':
                    self.eat('OPERATOR', ',')
        return params
    
    def parse_block(self):
        self.eat('OPERATOR', '{')
        statements = []
        
        while self.current_token() and self.current_token()[1] != '}':
            if self.current_token()[1] == 'return':
                statements.append(self.parse_return())
            else:
                # 简化处理,跳过其他语句
                self.pos += 1
        
        self.eat('OPERATOR', '}')
        return statements
    
    def parse_return(self):
        self.eat('KEYWORD', 'return')
        expr = self.parse_expression()
        self.eat('OPERATOR', ';')
        return {'type': 'return', 'expression': expr}
    
    def parse_expression(self):
        # 简化处理,只解析简单表达式
        token = self.current_token()
        if token[0] in ('IDENTIFIER', 'NUMBER'):
            return self.eat(token[0])[1]
        return None

compiler/semantic_analyzer.py

class SemanticAnalyzer:
    def __init__(self):
        self.symbol_table = {}
    
    def analyze(self, ast):
        errors = []
        
        if ast['type'] == 'function':
            # 检查返回类型
            if ast['return_type'] != 'trit':
                errors.append(f"函数 {ast['name']} 的返回类型必须是 trit")
            
            # 检查函数体
            for stmt in ast['body']:
                if stmt['type'] == 'return':
                    errors.extend(self.check_expression(stmt['expression']))
        
        return errors
    
    def check_expression(self, expr):
        # 简化处理,实际中需要更复杂的类型检查
        if expr in ['0', '1', 'X']:
            return []
        return [f"表达式 {expr} 可能需要更严格的类型检查"]

compiler/code_generator.py

class CodeGenerator:
    def __init__(self):
        self.instruction_set = {
            'TAND': '三值与操作',
            'TOR': '三值或操作',
            'TNOT': '三值非操作',
            'MOV': '数据传输',
            'RET': '函数返回'
        }
    
    def generate(self, ast):
        assembly = []
        
        if ast['type'] == 'function':
            assembly.append(f"; 函数: {ast['name']}")
            
            for stmt in ast['body']:
                if stmt['type'] == 'return':
                    if stmt['expression'] in ['0', '1']:
                        assembly.append(f"MOV {stmt['expression']}, result")
                    else:
                        # 复杂表达式需要更多指令
                        assembly.extend(self.generate_expression(stmt['expression']))
                    assembly.append("RET result")
        
        return '\n'.join(assembly)
    
    def generate_expression(self, expr):
        # 简化处理
        return [f"; 表达式: {expr}", "MOV X, result ; 需要实现表达式编译"]

4. 硬件模拟器

hardware/triple_machine.py

class TripleMachine:
    """三值逻辑计算机模拟器"""
    
    def __init__(self):
        self.memory = {}
        self.registers = {'result': 0}
        
        self.operations = {
            'TAND': lambda a, b: self.trit_and(a, b),
            'TOR': lambda a, b: self.trit_or(a, b),
            'TNOT': lambda a: self.trit_not(a),
            'MOV': self.move,
            'RET': self.return_value
        }
    
    def trit_and(self, a, b):
        truth_table = {
            (0,0):0, (0,1):0, (0,'X'):0,
            (1,0):0, (1,1):1, (1,'X'):'X',
            ('X',0):0, ('X',1):'X', ('X','X'):'X'
        }
        return truth_table.get((a, b), 'X')
    
    def trit_or(self, a, b):
        truth_table = {
            (0,0):0, (0,1):1, (0,'X'):'X',
            (1,0):1, (1,1):1, (1,'X'):1,
            ('X',0):'X', ('X',1):1, ('X','X'):'X'
        }
        return truth_table.get((a, b), 'X')
    
    def trit_not(self, a):
        truth_table = {0:1, 1:0, 'X':'X'}
        return truth_table.get(a, 'X')
    
    def move(self, value, target):
        if value in ['0', '1', 'X']:
            self.registers[target] = int(value) if value in ['0', '1'] else value
    
    def return_value(self, value):
        return self.registers.get(value, value)
    
    def execute(self, assembly_code):
        lines = assembly_code.split('\n')
        result = None
        
        for line in lines:
            line = line.split(';')[0].strip()  # 移除注释
            if not line:
                continue
            
            parts = line.split()
            if not parts:
                continue
                
            instruction = parts[0]
            
            if instruction == 'MOV':
                value = parts[1].rstrip(',')
                target = parts[2]
                self.move(value, target)
            elif instruction == 'RET':
                result = self.return_value(parts[1])
                break
        
        return result

hardware/simulator.py

class Simulator:
    def __init__(self):
        self.machine = TripleMachine()
    
    def simulate(self, assembly_code, inputs=None):
        """模拟执行汇编代码"""
        print("=== 三值计算机模拟执行 ===")
        print("汇编代码:")
        print(assembly_code)
        print("\n执行结果:")
        
        result = self.machine.execute(assembly_code)
        print(f"返回值: {result}")
        
        return result

5. 主程序

main.py

import os
import sys
from ai_agent import AIAgent, AICodeGenerator, AIOptimizer, AITester
from compiler.lexer import Lexer
from compiler.parser import Parser
from compiler.semantic_analyzer import SemanticAnalyzer
from compiler.code_generator import CodeGenerator
from hardware.simulator import Simulator

class MultiValueCompilerDemo:
    def __init__(self):
        self.ai_agent = AIAgent()
        self.code_gen_ai = AICodeGenerator()
        self.optimizer_ai = AIOptimizer()
        self.tester_ai = AITester()
        
        self.lexer = Lexer()
        self.semantic_analyzer = SemanticAnalyzer()
        self.code_generator = CodeGenerator()
        self.simulator = Simulator()
    
    def demonstrate_workflow(self, source_code):
        print("=" * 60)
        print("多值计算机编译器 AI Agent Demo")
        print("=" * 60)
        
        # 1. AI 辅助代码生成和建议
        print("\n1. AI 代码生成与建议")
        print("-" * 30)
        test_code = self.code_gen_ai.generate_test_case(complexity=2)
        print(f"AI 生成的测试代码: {test_code}")
        
        suggestions = self.code_gen_ai.suggest_optimization(source_code)
        print(f"AI 优化建议: {suggestions}")
        
        # 2. 词法分析
        print("\n2. 词法分析")
        print("-" * 30)
        tokens = self.lexer.tokenize(source_code)
        for token in tokens:
            print(f"行 {token[2]}: {token[0]}({token[1]})")
        
        # 3. 语法分析
        print("\n3. 语法分析")
        print("-" * 30)
        try:
            parser = Parser(tokens)
            ast = parser.parse()
            print(f"AST: {ast}")
        except Exception as e:
            print(f"语法分析错误: {e}")
            ast = None
        
        # 4. 语义分析
        print("\n4. 语义分析")
        print("-" * 30)
        if ast:
            errors = self.semantic_analyzer.analyze(ast)
            if errors:
                print("语义错误:")
                for error in errors:
                    print(f"  - {error}")
            else:
                print("语义分析通过")
        
        # 5. 代码生成
        print("\n5. 代码生成")
        print("-" * 30)
        if ast:
            assembly = self.code_generator.generate(ast)
            print("生成的汇编代码:")
            print(assembly)
            
            # 6. AI 优化
            print("\n6. AI 优化")
            print("-" * 30)
            optimized_asm = self.optimizer_ai.optimize_ir(assembly)
            print("优化后的汇编代码:")
            print(optimized_asm)
            
            # 7. 模拟执行
            print("\n7. 模拟执行")
            print("-" * 30)
            result = self.simulator.simulate(optimized_asm)
            
            # 8. AI 测试建议
            print("\n8. AI 测试建议")
            print("-" * 30)
            test_cases = self.tester_ai.generate_test_cases(
                "func main() -> trit", 3
            )
            print(f"AI 生成的测试用例: {test_cases}")
        
        # 9. AI 问答演示
        print("\n9. AI 问答系统")
        print("-" * 30)
        questions = [
            "什么是三值逻辑?",
            "编译器有哪些优化方法?",
            "如何实现三值逻辑的AND操作?"
        ]
        
        for question in questions:
            answer = self.ai_agent.query(question)
            print(f"Q: {question}")
            print(f"A: {answer}\n")

def main():
    # 示例源代码
    source_code = """
func main() -> trit {
    return 1;
}
"""
    
    demo = MultiValueCompilerDemo()
    demo.demonstrate_workflow(source_code)
    
    # 演示更复杂的例子
    print("\n" + "="*60)
    print("复杂示例演示")
    print("="*60)
    
    complex_source = """
func and_gate(a: trit, b: trit) -> trit {
    return a & b;
}
"""
    
    demo.demonstrate_workflow(complex_source)

if __name__ == "__main__":
    main()

6. 示例代码

examples/demo.tri

// 三值逻辑示例程序

// 简单的三值与门
func and_gate(a: trit, b: trit) -> trit {
    return a & b;
}

// 三值或门  
func or_gate(a: trit, b: trit) -> trit {
    return a | b;
}

// 复杂逻辑函数
func complex_logic(a: trit, b: trit, c: trit) -> trit {
    return (a & b) | (~c);
}

// 主函数
func main() -> trit {
    return and_gate(1, 0);
}

Demo 功能特点

  1. 完整的编译器工作流:从词法分析到代码生成和模拟执行

  2. AI 辅助开发

    • 代码生成和建议

    • 优化建议

    • 测试用例生成

    • 智能问答系统

  3. 三值逻辑支持:实现了三值逻辑的基本操作

  4. 硬件模拟:包含三值计算机模拟器

  5. 模块化设计:易于扩展和维护

这个Demo展示了AI Agent如何在整个编译器开发流程中提供帮助,从代码生成到优化建议,再到测试和调试支持。虽然这是一个简化版本,但它清晰地展示了核心概念和实现方法。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值