以下是遗传算法求解函数极大值问题的步骤和具体实现,以 f(x)=sin(x)+cos(2x)f(x) = \sin(x) + \cos(2x)f(x)=sin(x)+cos(2x) 为例,其中 x∈[0,2π]x \in [0, 2\pi]x∈[0,2π]。
遗传算法步骤
-
问题描述
寻找函数 f(x)=sin(x)+cos(2x)f(x) = \sin(x) + \cos(2x)f(x)=sin(x)+cos(2x) 的极大值。 -
编码设计
使用实数编码,直接表示解 xxx 的值。 -
适应度函数
fitness(x)=f(x)=sin(x)+cos(2x)\text{fitness}(x) = f(x) = \sin(x) + \cos(2x)fitness(x)=f(x)=sin(x)+cos(2x)
适应度值为函数值,即: -
种群初始化
随机生成种群,每个个体是范围 [0,2π][0, 2\pi][0,2π] 内的实数。 -
选择
使用轮盘赌选择或锦标赛选择。 -
交叉
使用实数编码的均匀交叉或中点交叉。 -
变异
随机改变 xxx 的值(在解的允许范围内)。 -
终止条件
达到最大迭代次数,或者适应度值收敛。
C++实现
#include <iostream>
#include <vector>

最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



