Faster R-CNN

本文介绍了Faster R-CNN的原理与实现细节,重点讨论了如何通过区域提议网络(RPN)实现实时目标检测。RPN使用卷积层计算候选区域,并为每个区域分配目标得分。该方法通过引入不同尺度和长宽比的锚点,增强了模型对多尺度目标的检测能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

使用卷积层计算proposals
On top of these convolutional features, we construct an RPN by adding a few additional convolutional layers that simultaneously regress region bounds and objectness scores at each location on a regular grid.

与之前的金字塔相比,作者引入来 anchor(锚),作为不同scales和aspect ratios的参考。

这里写图片描述

Training scheme: alternates between fine-tuning for the region proposal task and then fine-tuning for object detection, while keeping the proposals fixed.

model

这里写图片描述

Faster R-CNN

Region Proposal Networks

A RPN takes an image as input and outputs a set of rectangular object proposals, each with an objectness score.

为了产生region proposal,we slide a small network over the convolutional feature map output by the last shared convolutional layer.

This small network takes as input an n*n spatial window of the input convolutional feature map.

Each sliding window is mapped to a lower-dimensional feature.

This feature if fed into two sibling fc layers - a box-regression layer and a box-classification layer.

We use n=3 in this paper.

这里写图片描述

Anchors

At each sliding-window location, we simultaneously predict multiple region proposals, where the number of maximum possible proposals for each location is denoted as k.

An anchor is centered at the sliding window in question, and is associated with a scale and aspect ratio (Figure 3, left). By default we use 3 scales and 3 aspect ratios, yielding k = 9 anchors at each sliding position.

Translation-Invariant Anchors

anchors 和 function that compute proposal relative to the anchors都是translation-invariant

Multi-Scale Anchors as Regression References

Our method is built on a pyramid of anchors

Our method classifies and regresses bounding boxes with reference to anchor boxes of multiple scales and aspect ratios.

It only relies on images and feature maps of a single scale, and uses filters (sliding windows on the feature map) of a single size.

Loss Function

we assign a binary class label (of being an object or not) to each anchor.

这里写图片描述

t i is a vector representing the 4 parameterized coordinates of the predicted bounding box, and t ∗ is that of the i ground-truth box associated with a positive anchor.

这里写图片描述

这里写图片描述

这里写图片描述

Training RPNs

It is possible to optimize for the loss functions of all anchors, but this will bias towards negative samples as they are dominate.

Instead, we randomly sample 256 anchors in an image to compute the loss function of a mini-batch, where the sampled positive and negative anchors have a ratio of up to 1:1.

Sharing Features for RPN and Fast R-CNN

内容概要:本文深入解析了扣子COZE AI编程及其详细应用代码案例,旨在帮助读者理解新一代低门槛智能体开发范式。文章从五个维度展开:关键概念、核心技巧、典型应用场景、详细代码案例分析以及未来发展趋势。首先介绍了扣子COZE的核心概念,如Bot、Workflow、Plugin、Memory和Knowledge。接着分享了意图识别、函数调用链、动态Prompt、渐进式发布及监控可观测等核心技巧。然后列举了企业内部智能客服、电商导购助手、教育领域AI助教和金融行业合规质检等应用场景。最后,通过构建“会议纪要智能助手”的详细代码案例,展示了从需求描述、技术方案、Workflow节点拆解到调试与上线的全过程,并展望了多智能体协作、本地私有部署、Agent2Agent协议、边缘计算插件和实时RAG等未来发展方向。; 适合人群:对AI编程感兴趣的开发者,尤其是希望快速落地AI产品的技术人员。; 使用场景及目标:①学习如何使用扣子COZE构建生产级智能体;②掌握智能体实例、自动化流程、扩展能力和知识库的使用方法;③通过实际案例理解如何实现会议纪要智能助手的功能,包括触发器设置、下载节点、LLM节点Prompt设计、Code节点处理和邮件节点配置。; 阅读建议:本文不仅提供了理论知识,还包含了详细的代码案例,建议读者结合实际业务需求进行实践,逐步掌握扣子COZE的各项功能,并关注其未来的发展趋势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值