很经典的网络流问题.
对每个柱子拆点限制流量,所以拆点,每个柱子的入点向出点连一条容量为自身高度的边
然后能跳出去的柱子向汇点连一条容量为inf的边
能互相跳的柱子的出点向另一个柱子的入点连一条容量为inf(或者柱子的高度,已经限制过流量了)的边
然后有蜥蜴的柱子从源点引一条容量为1的边
直接跑isap,因为一点小错调了好久.
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<cmath>
#include<queue>
#include<algorithm>
using namespace std;
const int N=1000,inf=0x3f3f3f3f;
int len[30][30],cur[N],head[N],p[N],dis[N],num[N],pic[30][30],stone[30][30];
char ch[30];
int n,m,d,r,s,t,c,sz,te,tot;
queue<int>q;
struct xiyi{
int x,y;
}xy[400];
struct edge{
int u,v,cap,flow,next;
}e[100010];
int zs(int a,int b){return a>b?(a-b):(b-a);}
void add(int u,int v,int cap)
{
e[++te].u=u;
e[te].v=v;
e[te].flow=0;
e[te].cap=cap;
e[te].next=head[u];
head[u]=te;
}
void insert(int u,int v,int cap){add(u,v,cap),add(v,u,0);}
void bfs()
{
memset(dis,0,sizeof(dis));
while(!q.empty())q.pop();
q.push(t);
while(!q.empty())
{
int v=q.front();
for (int i=head[v];i;i=e[i].next)
{
int u=e[i].v;
if (e[i].cap==0&&!dis[u])
{
dis[u]=dis[v]+1;
q.push(u);
}
}
q.pop();
}
}
int augment()
{
int a=inf,x=t;
while(x!=s)
{
a=min(e[p[x]].cap-e[p[x]].flow,a);
x=e[p[x]].u;
}
x=t;
while(x!=s)
{
e[p[x]].flow+=a;
e[p[x]^1].flow-=a;
x=e[p[x]].u;
}
return a;
}
int isap()
{
int flow=0,x=s;
copy(head,head+n+1,cur);
memset(num,0,sizeof(num));
bfs();
for (int i=1;i<=n;++i)
++num[dis[i]];
while(dis[s]<n)
{
if (x==t)
{
flow+=augment();
x=s;
}
int ok=0;
for (int i=head[x];i;i=e[i].next)
{
int v=e[i].v;
if (e[i].cap>e[i].flow&&dis[v]+1==dis[x])
{
p[v]=i;
cur[x]=i;
x=v;
ok=1;
break;
}
}
if (!ok)
{
if (--num[dis[x]]==0)break;
int mx=n-1;
for (int i=head[x];i;i=e[i].next)
{
int v=e[i].v;
if (e[i].cap>e[i].flow)
mx=min(mx,dis[v]);
}
++num[dis[x]=mx+1];
cur[x]=head[x];
if (x!=s)x=e[p[x]].u;
}
}
return flow;
}
int main()
{
sz=tot=0,te=1;
memset(stone,0,sizeof(stone));
for (int i=0;i<=20;++i)
{
for (int j=0;j<=20;++j)
len[i][j]=ceil(sqrt(i*i+j*j));
}
cin>>r>>c>>d;
for (int i=1;i<=r;++i)
{
scanf("%s",ch+1);
for (int j=1;j<=c;++j)
{
pic[i][j]=ch[j]-'0';
if (pic[i][j])stone[i][j]=++sz,insert(sz,sz+1,pic[i][j]),++sz;//拆点连边
}
}
// for (int i=1;i<=r;i++)
// {
// for (int j=1;j<=c;j++)
// cout<<stone[i][j]<<' ';
// cout<<endl;
// }
n=sz+2;s=sz+1,t=n;
for (int i=1;i<=r;++i)
{
for (int j=1;j<=c;++j)
if (pic[i][j])
{
int mx=min(r,i+d),my=min(c,j+d);
if (i<=d||j<=d||i+d>r||j+d>c)insert(stone[i][j]+1,t,pic[i][j]);//能跳出的边向源点连边
for (int x=max(i-d,1);x<=mx;++x)
{
for (int y=max(j-d,1);y<=my;++y)
{
if (pic[x][y]&&len[zs(x,i)][zs(y,j)]<=d&&(x!=i||y!=j))//能连通的石柱间连边
insert(stone[i][j]+1,stone[x][y],inf);
}
}
}
}
for (int i=1;i<=r;++i)//源点向蜥蜴连边
{
scanf("%s",ch+1);
for (int j=1;j<=c;++j)
{
if (ch[j]=='L')
++tot,insert(s,stone[i][j],1);
}
}
// for (int i=2;i<=te;i+=2)
// cout<<e[i].u<<' '<<e[i].v<<' '<<e[i].cap<<endl;
cout<<tot-isap()<<endl;
}