Given:
¯r=¯r(a)=(1n∑ar)1/r=(1n∑ν=1narν)1/r
geometric mean:
¯=¯(a)=(a1a2...an)‾‾‾‾‾‾‾‾‾‾‾‾√n=(Πa)‾‾‾‾‾√n
in paritcular, arithmetic mean:
=(a)=¯1
Thus,
¯r(a)=((a))1r
¯(a)=e(loga)
harmonic mean:
¯(a)=¯−1(a)
Conclusions:
¯r=¯r(a,p)=(∑par∑p)1/r holds with pν>0
¯=¯(a,p)=(Πap)1/∑p
Weighted means:
suppose ∑q=1, then we obtain:
¯r(a)=(∑qar)1/r
¯(a)=Πaq
Suppose a>0, then we obtain:
(a+b)=(a)+(b)
¯(ab)=¯(a)¯(b)
¯r(b)=k¯r(a) if and only if b=k(a)
¯(b)=k¯(a) if and only if b=k(a)
¯r(a)≤¯(b) if aν≤bν, for all ν
Limiting cases of ¯r(a). mina and maxa denote the smallest and the largest value of (a). We obtain:
limr→0¯r(a)=¯(a).
proof:
limr→0¯r(a)=limr→0e1rlog(∑qar)=limr→0e1r(1+r∑qloga+O(r2))=e∑qloga=Πaq=¯(a).
limr→+∞¯r(a)=maxa, and limr→−∞¯r(a)=mina.
Thus, we have: ¯−∞(a)<¯r(a)<¯+∞(a).
Cauchy’s inequality:
¯r(a)<¯2r(a).
(∑ab)2≤∑a2∑b2 unless (a) and (b) are proportional. This inequality can be generalised as follows:
∣∣∣∣∣∣∑a2...∑la∑ab...∑lb.........∑al...∑l2∣∣∣∣∣∣>0unless the sets (a), (b), …, (l) are linearly dependent, i.e., unless there are numbers x,y , …, w not all zero, such thatxaν+ybν+...+wlν=0 for every ν.
Some inequalities useful in elementary analysis:
If ξ>0, 0<m<n, then
(1+ξm)m<(1+ξn)n.
If also ξ<m, then
(1−ξm)−m<(1−ξn)−n
§
If ξ>0, ξ≠1, 0<m<n, then
n(ξ1/n−1)<m(ξ1/m−1)
§
ap11ap22...apnn<(p1a1+...+pnanp1+...+pn)p1+...+pn
§
aq11aq22...aqnn<∑qawhere as usually ∑q=1. The simplest case is: aα+bβ<aα+bβ with α+β=1.
§
aα1bβ1+aα2bβ2<(a1+a2)α(b1+b2)βwith α+β=1.
§
((a1+b1)r+(a2+b2)r)1/r<(ar1+br1)1/r+(br1+br2)1/rwith r>1. When r<1, the inequality is reversed.
§
If α+β+...+λ=1, then
aα1b1β...lλ1+aα2b2β...lλ2<(a1+a2)α(b1+b2)β...(l1+l2)λ, unless a1/a2=b1/b2=...=l1/l2 or one of the sets is nul.