Inequalities - Elementary mean values

本文探讨了不等式中的均值概念,包括算术平均数、几何平均数和调和平均数的定义和相互关系。还介绍了加权平均和指数增长的性质,并证明了当 ( a ) 和 ( b ) 均为正数时,算术平均数大于等于几何平均数。最后,概述了柯西不等式及其在初等分析中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given:
¯r=¯r(a)=(1nar)1/r=(1nν=1narν)1/r

geometric mean:
¯=¯(a)=(a1a2...an)n=(Πa)n

in paritcular, arithmetic mean:
=(a)=¯1
Thus,

¯r(a)=((a))1r
¯(a)=e(loga)

harmonic mean:
¯(a)=¯1(a)

Conclusions:

¯r=¯r(a,p)=(parp)1/r holds with pν>0
¯=¯(a,p)=(Πap)1/p

Weighted means:

suppose q=1, then we obtain:

¯r(a)=(qar)1/r
¯(a)=Πaq

Suppose a>0, then we obtain:

(a+b)=(a)+(b)
¯(ab)=¯(a)¯(b)
¯r(b)=k¯r(a) if and only if b=k(a)
¯(b)=k¯(a) if and only if b=k(a)
¯r(a)¯(b) if aνbν, for all ν

Limiting cases of ¯r(a). mina and maxa denote the smallest and the largest value of (a). We obtain:

limr0¯r(a)=¯(a).

proof:
limr0¯r(a)=limr0e1rlog(qar)=limr0e1r(1+rqloga+O(r2))=eqloga=Πaq=¯(a).

limr+¯r(a)=maxa, and limr¯r(a)=mina.

Thus, we have: ¯(a)<¯r(a)<¯+(a).

Cauchy’s inequality:

¯r(a)<¯2r(a).

(ab)2a2b2 unless (a) and (b) are proportional. This inequality can be generalised as follows:

a2...laab...lb.........al...l2>0
unless the sets (a), (b), …, (l) are linearly dependent, i.e., unless there are numbers x, y, …, w not all zero, such that xaν+ybν+...+wlν=0 for every ν.

Some inequalities useful in elementary analysis:

If ξ>0, 0<m<n, then

(1+ξm)m<(1+ξn)n
.
If also ξ<m, then
(1ξm)m<(1ξn)n

§
If ξ>0, ξ1, 0<m<n, then
n(ξ1/n1)<m(ξ1/m1)

§
ap11ap22...apnn<(p1a1+...+pnanp1+...+pn)p1+...+pn

§
aq11aq22...aqnn<qa
where as usually q=1. The simplest case is: aα+bβ<aα+bβ with α+β=1.
§
aα1bβ1+aα2bβ2<(a1+a2)α(b1+b2)β
with α+β=1.
§
((a1+b1)r+(a2+b2)r)1/r<(ar1+br1)1/r+(br1+br2)1/r
with r>1. When r<1, the inequality is reversed.
§
If α+β+...+λ=1, then
aα1b1β...lλ1+aα2b2β...lλ2<(a1+a2)α(b1+b2)β...(l1+l2)λ
, unless a1/a2=b1/b2=...=l1/l2 or one of the sets is nul.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值