Inequalities - Minkowski's inequality

探讨了不同条件下算子不等式的成立情况,并通过几何解释说明了向量长度与其投影之间的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

§ Suppose that r is finite and not equal to 1. Then

¯(a)+¯(b)+...+¯(l)>¯(a+b+...+l)
holds with r>1; and
¯(a)+¯(b)+...+¯(l)<¯(a+b+...+l)
holds with r<1. The inequality holds unless (a),(b),...,(l) are proportional, or r0 and aν=bν=...=lν=0 for some a ν.

The main result remains true when r=+ or r=, except that the conditions for equality require a restatement.

§ If r is finite and not equal to 0 or 1, then

((a+b+...+l)r)1/r<(ar)1/r+...+(lr)1/r
holds with r>1, and

((a+b+...+l)r)1/r>(ar)1/r+...+(lr)1/r
holds with r<1.

§ If r is positive and not equal to 1, then

(a+b+...+l)r>ar+...+lr
holds with r>1, and
(a+b+...+l)r<ar+...+lr
holds with r<1.

In a nutshell, what is usually required in practice is as follows:
If r>0 then,

((a+b+...+l)r)R<(ar)R+...+(lr)R
where R=1 if 0<r1 and R=1r if r>1.

The following inequality is often useful for the prupose of determining an upper bound for ak.

§ Suppose that k>1, that k is conjugate to k, and that B>0. Then a necessary and sufficient condition that akA is that abA1/kB1/k for all b for which bkB.

The geometrical interpretations are illustrated as follows. When k=2, A=l2, and B=1 holds, we take rectangular coordinats. The theorem asserts that, if the length of the projection of a vector along an arbitrary direction does not exceed l, the length of the vector does not exceed l.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值