Advances in Neural Information Processing Systems 24 (NIPS 2011)
The papers below appear in Advances in Neural Information Processing Systems 24 edited by J. Shawe-Taylor and R.S. Zemel and P.L. Bartlett and F. Pereira and K.Q. Weinberger .They are proceedings from the conference, "Neural Information Processing Systems 2011."
- Maximum Margin Multi-Instance Learning Hua Wang, Heng Huang, Farhad Kamangar, Feiping Nie, Chris H. Ding
- Shaping Level Sets with Submodular Functions Francis R. Bach
- Nonlinear Inverse Reinforcement Learning with Gaussian Processes Sergey Levine, Zoran Popovic, Vladlen Koltun
- Video Annotation and Tracking with Active Learning Carl Vondrick, Deva Ramanan
- On U-processes and clustering performance Stéphan J. Clémençcon
- Penalty Decomposition Methods for Rank Minimization Yong Zhang, Zhaosong Lu
- Sparse Manifold Clustering and Embedding Ehsan Elhamifar, René Vidal
- Unifying Non-Maximum Likelihood Learning Objectives with Minimum KL Contraction Siwei Lyu
- Image Parsing with Stochastic Scene Grammar Yibiao Zhao, Song-chun Zhu
- A Reinforcement Learning Theory for Homeostatic Regulation Mehdi Keramati, Boris S. Gutkin
- Learning large-margin halfspaces with more malicious noise Phil Long, Rocco Servedio
- On Strategy Stitching in Large Extensive Form Multiplayer Games Richard G. Gibson, Duane Szafron
- Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials Philipp Krähenbühl, Vladlen Koltun
- Transfer Learning by Borrowing Examples for Multiclass Object Detection Joseph J. Lim, Ruslan R. Salakhutdinov, Antonio Torralba
- Environmental statistics and the trade-off between model-based and TD learning in humans Dylan A. Simon, Nathaniel D. Daw
- Variational Learning for Recurrent Spiking Networks Danilo J. Rezende, Daan Wierstra, Wulfram Gerstner
- Multiple Instance Learning on Structured Data Dan Zhang, Yan Liu, Luo Si, Jian Zhang, Richard D. Lawrence
- Manifold Precis: An Annealing Technique for Diverse Sampling of Manifolds Nitesh Shroff, Pavan Turaga, Rama Chellappa
- A Global Structural EM Algorithm for a Model of Cancer Progression Ali Tofigh, Erik Sj̦lund, Mattias H̦glund, Jens Lagergren
- Action-Gap Phenomenon in Reinforcement Learning Amir-massoud Farahmand
- Generalized Lasso based Approximation of Sparse Coding for Visual Recognition Nobuyuki Morioka, Shin'ichi Satoh
- Matrix Completion for Multi-label Image Classification Ricardo S. Cabral, Fernando Torre, Joao P. Costeira, Alexandre Bernardino
- Multi-View Learning of Word Embeddings via CCA Paramveer Dhillon, Dean P. Foster, Lyle H. Ungar
- Global Solution of Fully-Observed Variational Bayesian Matrix Factorization is Column-Wise Independent Shinichi Nakajima, Masashi Sugiyama, S. D. Babacan
- Estimating time-varying input signals and ion channel states from a single voltage trace of a neuron Ryota Kobayashi, Yasuhiro Tsubo, Petr Lansky, Shigeru Shinomoto
- Additive Gaussian Processes David K. Duvenaud, Hannes Nickisch, Carl E. Rasmussen
- Inferring Interaction Networks using the IBP applied to microRNA Target Prediction Hai-son P. Le, Ziv Bar-joseph
- Semantic Labeling of 3D Point Clouds for Indoor Scenes Hema S. Koppula, Abhishek Anand, Thorsten Joachims, Ashutosh Saxena
- Learning Higher-Order Graph Structure with Features by Structure Penalty Shilin Ding, Grace Wahba, Xiaojin Zhu
- Analysis and Improvement of Policy Gradient Estimation Tingting Zhao, Hirotaka Hachiya, Gang Niu, Masashi Sugiyama
- Dimensionality Reduction Using the Sparse Linear Model Ioannis A. Gkioulekas, Todd Zickler
- Robust Multi-Class Gaussian Process Classification Daniel Hernández-lobato, Jose M. Hernández-lobato, Pierre Dupont
- Maximum Margin Multi-Label Structured Prediction Christoph H. Lampert
- Extracting Speaker-Specific Information with a Regularized Siamese Deep Network Ke Chen, Ahmad Salman
- Thinning Measurement Models and Questionnaire Design Ricardo Silva
- Inductive reasoning about chimeric creatures Charles Kemp
- Optimal Reinforcement Learning for Gaussian Systems Philipp Hennig
- A Denoising View of Matrix Completion Weiran Wang, Miguel Á. Carreira-Perpiñán, Zhengdong Lu
- Efficient Online Learning via Randomized Rounding Nicolò Cesa-bianchi, Ohad Shamir
- Efficient Methods for Overlapping Group Lasso Lei Yuan, Jun Liu, Jieping Ye
- Differentially Private M-Estimators Jing Lei
- Multiple Instance Filtering Kamil A. Wnuk, Stefano Soatto
- Phase transition in the family of p-resistances Morteza Alamgir, Ulrike V. Luxburg
- Convergent Bounds on the Euclidean Distance Yoonho Hwang, Hee-kap Ahn
- Heavy-tailed Distances for Gradient Based Image Descriptors Yangqing Jia, Trevor Darrell
- RTRMC: A Riemannian trust-region method for low-rank matrix completion Nicolas Boumal, Pierre-antoine Absil
- Expressive Power and Approximation Errors of Restricted Boltzmann Machines Guido F. Montufar, Johannes Rauh, Nihat Ay
- History distribution matching method for predicting effectiveness of HIV combination therapies Jasmina Bogojeska
- Semi-supervised Regression via Parallel Field Regularization Binbin Lin, Chiyuan Zhang, Xiaofei He
- Object Detection with Grammar Models Ross B. Girshick, Pedro F. Felzenszwalb, David A. McAllester
- Non-Asymptotic Analysis of Stochastic Approximation Algorithms for Machine Learning Eric Moulines, Francis R. Bach
- On fast approximate submodular minimization Stefanie Jegelka, Hui Lin, Jeff A. Bilmes
- Emergence of Multiplication in a Biophysical Model of a Wide-Field Visual Neuron for Computing Object Approaches: Dynamics, Peaks, & Fits Matthias S. Keil
- Efficient anomaly detection using bipartite k-NN graphs Kumar Sricharan, Alfred O. Hero
- Projection onto A Nonnegative Max-Heap Jun Liu, Liang Sun, Jieping Ye
- Improving Topic Coherence with Regularized Topic Models David Newman, Edwin V. Bonilla, Wray Buntine
- A Two-Stage Weighting Framework for Multi-Source Domain Adaptation Qian Sun, Rita Chattopadhyay, Sethuraman Panchanathan, Jieping Ye
- An ideal observer model for identifying the reference frame of objects Joseph L. Austerweil, Abram L. Friesen, Thomas L. Griffiths
- Generalized Beta Mixtures of Gaussians Artin Armagan, Merlise Clyde, David B. Dunson
- Large-Scale Sparse Principal Component Analysis with Application to Text Data Youwei Zhang, Laurent E. Ghaoui
- Simultaneous Sampling and Multi-Structure Fitting with Adaptive Reversible Jump MCMC Trung T. Pham, Tat-jun Chin, Jin Yu, David Suter
- \theta-MRF: Capturing Spatial and Semantic Structure in the Parameters for Scene Understanding Congcong Li, Ashutosh Saxena, Tsuhan Chen
- Crowdclustering Ryan G. Gomes, Peter Welinder, Andreas Krause, Pietro Perona
- Fast and Balanced: Efficient Label Tree Learning for Large Scale Object Recognition Jia Deng, Sanjeev Satheesh, Alexander C. Berg, Fei Li
- Target Neighbor Consistent Feature Weighting for Nearest Neighbor Classification Ichiro Takeuchi, Masashi Sugiyama
- The Impact of Unlabeled Patterns in Rademacher Complexity Theory for Kernel Classifiers Luca Oneto, Davide Anguita, Alessandro Ghio, Sandro Ridella
- Relative Density-Ratio Estimation for Robust Distribution Comparison Makoto Yamada, Taiji Suzuki, Takafumi Kanamori, Hirotaka Hachiya, Masashi Sugiyama
- Solving Decision Problems with Limited Information Denis D. Maua, Cassio Campos
- Linearized Alternating Direction Method with Adaptive Penalty for Low-Rank Representation Zhouchen Lin, Risheng Liu, Zhixun Su
- Learning a Tree of Metrics with Disjoint Visual Features Kristen Grauman, Fei Sha, Sung Ju Hwang
- Efficient inference in matrix-variate Gaussian models with \iid observation noise Oliver Stegle, Christoph Lippert, Joris M. Mooij, Neil D. Lawrence, Karsten M. Borgwardt
- On Causal Discovery with Cyclic Additive Noise Models Joris M. Mooij, Dominik Janzing, Tom Heskes, Prof. Bernhard Schölkopf
- Learning to Agglomerate Superpixel Hierarchies Viren Jain, Srinivas C. Turaga, K Briggman, Moritz N. Helmstaedter, Winfried Denk, H. S. Seung
- A Convergence Analysis of Log-Linear Training Simon Wiesler, Hermann Ney
- Shallow vs. Deep Sum-Product Networks Olivier Delalleau, Yoshua Bengio
- Signal Estimation Under Random Time-Warpings and Nonlinear Signal Alignment Sebastian A. Kurtek, Anuj Srivastava, Wei Wu
- From Bandits to Experts: On the Value of Side-Observations Shie Mannor, Ohad Shamir
- Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent Benjamin Recht, Christopher Re, Stephen Wright, Feng Niu
- Clustered Multi-Task Learning Via Alternating Structure Optimization Jiayu Zhou, Jianhui Chen, Jieping Ye
- Why The Brain Separates Face Recognition From Object Recognition Joel Z. Leibo, Jim Mutch, Tomaso Poggio
- Reinforcement Learning using Kernel-Based Stochastic Factorization Andre S. Barreto, Doina Precup, Joelle Pineau
- k-NN Regression Adapts to Local Intrinsic Dimension Samory Kpotufe
- Learning unbelievable probabilities Xaq Pitkow, Yashar Ahmadian, Ken D. Miller
- A Machine Learning Approach to Predict Chemical Reactions Matthew A. Kayala, Pierre F. Baldi
- Dynamical segmentation of single trials from population neural data Biljana Petreska, Byron M. Yu, John P. Cunningham, Gopal Santhanam, Stephen I. Ryu, Krishna V. Shenoy, Maneesh Sahani
- Recovering Intrinsic Images with a Global Sparsity Prior on Reflectance Carsten Rother, Martin Kiefel, Lumin Zhang, Prof. Bernhard Schölkopf, Peter V. Gehler
- Probabilistic Modeling of Dependencies Among Visual Short-Term Memory Representations Emin Orhan, Robert A. Jacobs
- Optimistic Optimization of a Deterministic Function without the Knowledge of its Smoothness Rémi Munos
- Reconstructing Patterns of Information Diffusion from Incomplete Observations Flavio Chierichetti, David Liben-nowell, Jon M. Kleinberg
- Dynamic Pooling and Unfolding Recursive Autoencoders for Paraphrase Detection Richard Socher, Eric H. Huang, Jeffrey Pennin, Christopher D. Manning, Andrew Y. Ng
- Active Learning Ranking from Pairwise Preferences with Almost Optimal Query Complexity Nir Ailon
- Modelling Genetic Variations using Fragmentation-Coagulation Processes Yee W. Teh, Charles Blundell, Lloyd Elliott
- Prediction strategies without loss Michael Kapralov, Rina Panigrahy
- Data Skeletonization via Reeb Graphs Xiaoyin Ge, Issam I. Safa, Mikhail Belkin, Yusu Wang
- Information Rates and Optimal Decoding in Large Neural Populations Kamiar R. Rad, Liam Paninski
- Selective Prediction of Financial Trends with Hidden Markov Models Dmitry Pidan, Ran El-Yaniv
- Maximal Cliques that Satisfy Hard Constraints with Application to Deformable Object Model Learning Xinggang Wang, Xiang Bai, Xingwei Yang, Wenyu Liu, Longin J. Latecki
- Distributed Delayed Stochastic Optimization Alekh Agarwal, John C. Duchi
- Greedy Algorithms for Structurally Constrained High Dimensional Problems Ambuj Tewari, Pradeep K. Ravikumar, Inderjit S. Dhillon
- Newtron: an Efficient Bandit algorithm for Online Multiclass Prediction Elad Hazan, Satyen Kale
- Learning Sparse Representations of High Dimensional Data on Large Scale Dictionaries Zhen J. Xiang, Hao Xu, Peter J. Ramadge
- Minimax Localization of Structural Information in Large Noisy Matrices Mladen Kolar, Sivaraman Balakrishnan, Alessandro Rinaldo, Aarti Singh
- Maximum Covariance Unfolding : Manifold Learning for Bimodal Data Vijay Mahadevan, Chi W. Wong, Jose C. Pereira, Tom Liu, Nuno Vasconcelos, Lawrence K. Saul
- Efficient Learning of Generalized Linear and Single Index Models with Isotonic Regression Sham M. Kakade, Varun Kanade, Ohad Shamir, Adam Kalai
- On the Analysis of Multi-Channel Neural Spike Data Bo Chen, David E. Carlson, Lawrence Carin
- Learning Eigenvectors for Free Wouter M. Koolen, Wojciech Kotlowski, Manfred K. Warmuth
- Noise Thresholds for Spectral Clustering Sivaraman Balakrishnan, Min Xu, Akshay Krishnamurthy, Aarti Singh
- The Kernel Beta Process Lu Ren, Yingjian Wang, Lawrence Carin, David B. Dunson
- Statistical Performance of Convex Tensor Decomposition Ryota Tomioka, Taiji Suzuki, Kohei Hayashi, Hisashi Kashima
- Probabilistic amplitude and frequency demodulation Richard Turner, Maneesh Sahani
- Directed Graph Embedding: an Algorithm based on Continuous Limits of Laplacian-type Operators Dominique C. Perrault-joncas, Marina Meila
- Efficient coding of natural images with a population of noisy Linear-Nonlinear neurons Yan Karklin, Eero P. Simoncelli
- Complexity of Inference in Latent Dirichlet Allocation David Sontag, Dan Roy
- ICA with Reconstruction Cost for Efficient Overcomplete Feature Learning Quoc V. Le, Alexandre Karpenko, Jiquan Ngiam, Andrew Y. Ng
- Lower Bounds for Passive and Active Learning Maxim Raginsky, Alexander Rakhlin
- Stochastic convex optimization with bandit feedback Alekh Agarwal, Dean P. Foster, Daniel J. Hsu, Sham M. Kakade, Alexander Rakhlin
- Structure Learning for Optimization Shulin Yang, Ali Rahimi
- Inverting Grice's Maxims to Learn Rules from Natural Language Extractions Mohammad S. Sorower, Janardhan R. Doppa, Walker Orr, Prasad Tadepalli, Thomas G. Dietterich, Xiaoli Z. Fern
- Active Classification based on Value of Classifier Tianshi Gao, Daphne Koller
- Group Anomaly Detection using Flexible Genre Models Liang Xiong, Barnabás Póczos, Jeff G. Schneider
- Approximating Semidefinite Programs in Sublinear Time Dan Garber, Elad Hazan
- SpaRCS: Recovering low-rank and sparse matrices from compressive measurements Andrew E. Waters, Aswin C. Sankaranarayanan, Richard Baraniuk
- Budgeted Optimization with Concurrent Stochastic-Duration Experiments Javad Azimi, Alan Fern, Xiaoli Z. Fern
- Online Submodular Set Cover, Ranking, and Repeated Active Learning Andrew Guillory, Jeff A. Bilmes
- Structured sparse coding via lateral inhibition Arthur D. Szlam, Karol Gregor, Yann L. Cun
- Sparse Filtering Jiquan Ngiam, Zhenghao Chen, Sonia A. Bhaskar, Pang W. Koh, Andrew Y. Ng
- Divide-and-Conquer Matrix Factorization Lester W. Mackey, Michael I. Jordan, Ameet Talwalkar
- Im2Text: Describing Images Using 1 Million Captioned Photographs Vicente Ordonez, Girish Kulkarni, Tamara L. Berg
- Nonstandard Interpretations of Probabilistic Programs for Efficient Inference David Wingate, Noah Goodman, Andreas Stuhlmueller, Jeffrey M. Siskind
- Collective Graphical Models Daniel R. Sheldon, Thomas G. Dietterich
- Metric Learning with Multiple Kernels Jun Wang, Huyen T. Do, Adam Woznica, Alexandros Kalousis
- ShareBoost: Efficient multiclass learning with feature sharing Shai Shalev-shwartz, Yonatan Wexler, Amnon Shashua
- Active dendrites: adaptation to spike-based communication Balazs B. Ujfalussy, Máté Lengyel
- Message-Passing for Approximate MAP Inference with Latent Variables Jiarong Jiang, Piyush Rai, Hal Daume
- A More Powerful Two-Sample Test in High Dimensions using Random Projection Miles Lopes, Laurent Jacob, Martin J. Wainwright
- Orthogonal Matching Pursuit with Replacement Prateek Jain, Ambuj Tewari, Inderjit S. Dhillon
- Composite Multiclass Losses Elodie Vernet, Mark D. Reid, Robert C. Williamson
- Beating SGD: Learning SVMs in Sublinear Time Elad Hazan, Tomer Koren, Nati Srebro
- Greedy Model Averaging Dong Dai, Tong Zhang
- Large-Scale Category Structure Aware Image Categorization Bin Zhao, Fei Li, Eric P. Xing
- On the accuracy of l1-filtering of signals with block-sparse structure Fatma K. Karzan, Arkadi S. Nemirovski, Boris T. Polyak, Anatoli Juditsky
- Multilinear Subspace Regression: An Orthogonal Tensor Decomposition Approach Qibin Zhao, Cesar F. Caiafa, Danilo P. Mandic, Liqing Zhang, Tonio Ball, Andreas Schulze-bonhage, Andrzej S. Cichocki
- Finite Time Analysis of Stratified Sampling for Monte Carlo Alexandra Carpentier, Rémi Munos
- Monte Carlo Value Iteration with Macro-Actions Zhan Lim, Lee Sun, David Hsu
- Structured Learning for Cell Tracking Xinghua Lou, Fred A. Hamprecht
- Two is better than one: distinct roles for familiarity and recollection in retrieving palimpsest memories Cristina Savin, Peter Dayan, Máté Lengyel
- Algorithms and hardness results for parallel large margin learning Phil Long, Rocco Servedio
- Portmanteau Vocabularies for Multi-Cue Image Representation Fahad S. Khan, Joost Weijer, Andrew D. Bagdanov, Maria Vanrell
- Boosting with Maximum Adaptive Sampling Charles Dubout, Francois Fleuret
- Gaussian Process Training with Input Noise Andrew Mchutchon, Carl E. Rasmussen
- Empirical models of spiking in neural populations Jakob H. Macke, Lars Buesing, John P. Cunningham, Byron M. Yu, Krishna V. Shenoy, Maneesh Sahani
- Learning Probabilistic Non-Linear Latent Variable Models for Tracking Complex Activities Angela Yao, Juergen Gall, Luc V. Gool, Raquel Urtasun
- Bayesian Partitioning of Large-Scale Distance Data David Adametz, Volker Roth
- From Stochastic Nonlinear Integrate-and-Fire to Generalized Linear Models Skander Mensi, Richard Naud, Wulfram Gerstner
- On the Completeness of First-Order Knowledge Compilation for Lifted Probabilistic Inference Guy Broeck
- Hierarchical Topic Modeling for Analysis of Time-Evolving Personal Choices Xianxing Zhang, Lawrence Carin, David B. Dunson
- An Exact Algorithm for F-Measure Maximization Krzysztof J. Dembczynski, Willem Waegeman, Weiwei Cheng, Eyke Hüllermeier
- Co-regularized Multi-view Spectral Clustering Abhishek Kumar, Piyush Rai, Hal Daume
- Sequence learning with hidden units in spiking neural networks Johanni Brea, Walter Senn, Jean-pascal Pfister
- Identifying Alzheimer's Disease-Related Brain Regions from Multi-Modality Neuroimaging Data using Sparse Composite Linear Discrimination Analysis Shuai Huang, Jing Li, Jieping Ye, Teresa Wu, Kewei Chen, Adam Fleisher, Eric Reiman
- A blind sparse deconvolution method for neural spike identification Chaitanya Ekanadham, Daniel Tranchina, Eero P. Simoncelli
- How Do Humans Teach: On Curriculum Learning and Teaching Dimension Faisal Khan, Bilge Mutlu, Xiaojin Zhu
- Convergence Rates of Inexact Proximal-Gradient Methods for Convex Optimization Mark Schmidt, Nicolas L. Roux, Francis R. Bach
- Joint 3D Estimation of Objects and Scene Layout Andreas Geiger, Christian Wojek, Raquel Urtasun
- Spatial distance dependent Chinese restaurant processes for image segmentation Soumya Ghosh, Andrei B. Ungureanu, Erik B. Sudderth, David M. Blei
- Pylon Model for Semantic Segmentation Victor Lempitsky, Andrea Vedaldi, Andrew Zisserman
- t-divergence Based Approximate Inference Nan Ding, Yuan Qi, S.v.n. Vishwanathan
- Learning person-object interactions for action recognition in still images Vincent Delaitre, Josef Sivic, Ivan Laptev
- Submodular Multi-Label Learning James Petterson, Tibério S. Caetano
- Uniqueness of Belief Propagation on Signed Graphs Yusuke Watanabe
- Higher-Order Correlation Clustering for Image Segmentation Sungwoong Kim, Sebastian Nowozin, Pushmeet Kohli, Chang D. Yoo
- Optimal learning rates for least squares SVMs using Gaussian kernels Mona Eberts, Ingo Steinwart
- Learning Auto-regressive Models from Sequence and Non-sequence Data Tzu-kuo Huang, Jeff G. Schneider
- Committing Bandits Loc X. Bui, Ramesh Johari, Shie Mannor
- Energetically Optimal Action Potentials Martin B. Stemmler, Biswa Sengupta, Simon Laughlin, Jeremy Niven
- Unifying Framework for Fast Learning Rate of Non-Sparse Multiple Kernel Learning Taiji Suzuki
- See the Tree Through the Lines: The Shazoo Algorithm Fabio Vitale, Nicolò Cesa-bianchi, Claudio Gentile, Giovanni Zappella
- The Fast Convergence of Boosting Matus J. Telgarsky
- Multi-armed bandits on implicit metric spaces Aleksandrs Slivkins
- Learning Anchor Planes for Classification Ziming Zhang, Lubor Ladicky, Philip Torr, Amir Saffari
- Infinite Latent SVM for Classification and Multi-task Learning Jun Zhu, Ning Chen, Eric P. Xing
- Facial Expression Transfer with Input-Output Temporal Restricted Boltzmann Machines Matthew D. Zeiler, Graham W. Taylor, Leonid Sigal, Iain Matthews, Rob Fergus
- Universal low-rank matrix recovery from Pauli measurements Yi-kai Liu
- Better Mini-Batch Algorithms via Accelerated Gradient Methods Andrew Cotter, Ohad Shamir, Nati Srebro, Karthik Sridharan
- Adaptive Hedge Tim V. Erven, Wouter M. Koolen, Steven D. Rooij, Peter Grünwald
- Agnostic Selective Classification Yair Wiener, Ran El-Yaniv
- Comparative Analysis of Viterbi Training and Maximum Likelihood Estimation for HMMs Armen Allahverdyan, Aram Galstyan
- PAC-Bayesian Analysis of Contextual Bandits Yevgeny Seldin, Peter Auer, John S. Shawe-taylor, Ronald Ortner, François Laviolette
- Bayesian Spike-Triggered Covariance Analysis Il Memming Park, Jonathan W. Pillow
- Non-conjugate Variational Message Passing for Multinomial and Binary Regression David A. Knowles, Tom Minka
- Learning to Search Efficiently in High Dimensions Zhen Li, Huazhong Ning, Liangliang Cao, Tong Zhang, Yihong Gong, Thomas S. Huang
- A Non-Parametric Approach to Dynamic Programming Oliver B. Kroemer, Jan R. Peters
- Advice Refinement in Knowledge-Based SVMs Gautam Kunapuli, Richard Maclin, Jude W. Shavlik
- Kernel Bayes' Rule Kenji Fukumizu, Le Song, Arthur Gretton
- Transfer from Multiple MDPs Alessandro Lazaric, Marcello Restelli
- Sparse Bayesian Multi-Task Learning Shengbo Guo, Onno Zoeter, Cédric Archambeau
- Online Learning: Stochastic, Constrained, and Smoothed Adversaries Alexander Rakhlin, Karthik Sridharan, Ambuj Tewari
- Learning in Hilbert vs. Banach Spaces: A Measure Embedding Viewpoint Kenji Fukumizu, Gert R. Lanckriet, Bharath K. Sriperumbudur
- Sparse Recovery with Brownian Sensing Alexandra Carpentier, Odalric-ambrym Maillard, Rémi Munos
- An Unsupervised Decontamination Procedure For Improving The Reliability Of Human Judgments Michael C. Mozer, Benjamin Link, Harold Pashler
- Bayesian Bias Mitigation for Crowdsourcing Fabian L. Wauthier, Michael I. Jordan
- Ranking annotators for crowdsourced labeling tasks Vikas C. Raykar, Shipeng Yu
- Clustering via Dirichlet Process Mixture Models for Portable Skill Discovery Scott Niekum, Andrew G. Barto
- Probabilistic Joint Image Segmentation and Labeling Adrian Ion, Joao Carreira, Cristian Sminchisescu
- Variance Reduction in Monte-Carlo Tree Search Joel Veness, Marc Lanctot, Michael Bowling
- Learning Patient-Specific Cancer Survival Distributions as a Sequence of Dependent Regressors Chun-Nam Yu, Russell Greiner, Hsiu-Chin Lin, Vickie Baracos
- An Application of Tree-Structured Expectation Propagation for Channel Decoding Pablo M. Olmos, Luis Salamanca, Juan Fuentes, Fernando Pérez-Cruz
- High-Dimensional Graphical Model Selection: Tractable Graph Families and Necessary Conditions Animashree Anandkumar, Vincent Tan, Alan S. Willsky
- Structural equations and divisive normalization for energy-dependent component analysis Jun-ichiro Hirayama, Aapo Hyvärinen
- Robust Lasso with missing and grossly corrupted observations Nasser M. Nasrabadi, Trac D. Tran, Nam Nguyen
- A concave regularization technique for sparse mixture models Martin O. Larsson, Johan Ugander
- Learning a Distance Metric from a Network Blake Shaw, Bert Huang, Tony Jebara
- Variance Penalizing AdaBoost Pannagadatta K. Shivaswamy, Tony Jebara
- Efficient Offline Communication Policies for Factored Multiagent POMDPs João V. Messias, Matthijs Spaan, Pedro U. Lima
- Sparse recovery by thresholded non-negative least squares Martin Slawski, Matthias Hein
- On Learning Discrete Graphical Models using Greedy Methods Ali Jalali, Christopher C. Johnson, Pradeep K. Ravikumar
- Policy Gradient Coagent Networks Philip S. Thomas
- Iterative Learning for Reliable Crowdsourcing Systems David R. Karger, Sewoong Oh, Devavrat Shah
- A Model for Temporal Dependencies in Event Streams Asela Gunawardana, Christopher Meek, Puyang Xu
- Unsupervised learning models of primary cortical receptive fields and receptive field plasticity Maneesh Bhand, Ritvik Mudur, Bipin Suresh, Andrew Saxe, Andrew Y. Ng
- The Doubly Correlated Nonparametric Topic Model Dae I. Kim, Erik B. Sudderth
- MAP Inference for Bayesian Inverse Reinforcement Learning Jaedeug Choi, Kee-eung Kim
- Similarity-based Learning via Data Driven Embeddings Purushottam Kar, Prateek Jain
- Predicting Dynamic Difficulty Olana Missura, Thomas Gärtner
- Sparse Estimation with Structured Dictionaries David P. Wipf
- Spectral Methods for Learning Multivariate Latent Tree Structure Animashree Anandkumar, Kamalika Chaudhuri, Daniel J. Hsu, Sham M. Kakade, Le Song, Tong Zhang
- How biased are maximum entropy models? Jakob H. Macke, Iain Murray, Peter E. Latham
- Active learning of neural response functions with Gaussian processes Mijung Park, Greg Horwitz, Jonathan W. Pillow
- Priors over Recurrent Continuous Time Processes Ardavan Saeedi, Alexandre Bouchard-côté
- Learning to Learn with Compound HD Models Antonio Torralba, Joshua B. Tenenbaum, Ruslan R. Salakhutdinov
- Anatomically Constrained Decoding of Finger Flexion from Electrocorticographic Signals Zuoguan Wang, Gerwin Schalk, Qiang Ji
- Active Learning with a Drifting Distribution Liu Yang
- PiCoDes: Learning a Compact Code for Novel-Category Recognition Alessandro Bergamo, Lorenzo Torresani, Andrew W. Fitzgibbon
- Confidence Sets for Network Structure David S. Choi, Patrick J. Wolfe, Edo M. Airoldi
- Prismatic Algorithm for Discrete D.C. Programming Problem Yoshinobu Kawahara, Takashi Washio
- Hierarchical Matching Pursuit for Image Classification: Architecture and Fast Algorithms Liefeng Bo, Xiaofeng Ren, Dieter Fox
- Multiclass Boosting: Theory and Algorithms Mohammad J. Saberian, Nuno Vasconcelos
- Learning with the weighted trace-norm under arbitrary sampling distributions Rina Foygel, Ohad Shamir, Nati Srebro, Ruslan R. Salakhutdinov
- Scalable Training of Mixture Models via Coresets Dan Feldman, Matthew Faulkner, Andreas Krause
- Generalised Coupled Tensor Factorisation Kenan Y. Yılmaz, Ali T. Cemgil, Umut Simsekli
- Nearest Neighbor based Greedy Coordinate Descent Inderjit S. Dhillon, Pradeep K. Ravikumar, Ambuj Tewari
- The Fixed Points of Off-Policy TD J. Z. Kolter
- Generalizing from Several Related Classification Tasks to a New Unlabeled Sample Gilles Blanchard, Gyemin Lee, Clayton Scott
- Trace Lasso: a trace norm regularization for correlated designs Edouard Grave, Guillaume R. Obozinski, Francis R. Bach
- Statistical Tests for Optimization Efficiency Levi Boyles, Anoop Korattikara, Deva Ramanan, Max Welling
- Generalization Bounds and Consistency for Latent Structural Probit and Ramp Loss Joseph Keshet, David A. McAllester
- A Brain-Machine Interface Operating with a Real-Time Spiking Neural Network Control Algorithm Julie Dethier, Paul Nuyujukian, Chris Eliasmith, Terrence C. Stewart, Shauki A. Elasaad, Krishna V. Shenoy, Kwabena A. Boahen
- Multi-Bandit Best Arm Identification Victor Gabillon, Mohammad Ghavamzadeh, Alessandro Lazaric, Sébastien Bubeck
- Randomized Algorithms for Comparison-based Search Dominique Tschopp, Suhas Diggavi, Payam Delgosha, Soheil Mohajer
- Active Ranking using Pairwise Comparisons Kevin G. Jamieson, Robert Nowak
- An Empirical Evaluation of Thompson Sampling Olivier Chapelle, Lihong Li
- Blending Autonomous Exploration and Apprenticeship Learning Thomas J. Walsh, Daniel K. Hewlett, Clayton T. Morrison
- Nonnegative dictionary learning in the exponential noise model for adaptive music signal representation Onur Dikmen, Cédric Févotte
- Evaluating the inverse decision-making approach to preference learning Alan Jern, Christopher G. Lucas, Charles Kemp
- Sparse Features for PCA-Like Linear Regression Christos Boutsidis, Petros Drineas, Malik Magdon-Ismail
- The Manifold Tangent Classifier Salah Rifai, Yann N. Dauphin, Pascal Vincent, Yoshua Bengio, Xavier Muller
- Analytical Results for the Error in Filtering of Gaussian Processes Alex K. Susemihl, Ron Meir, Manfred Opper
- Improved Algorithms for Linear Stochastic Bandits Yasin Abbasi-yadkori, Dávid Pál, Csaba Szepesvári
- Testing a Bayesian Measure of Representativeness Using a Large Image Database Joshua T. Abbott, Katherine A. Heller, Zoubin Ghahramani, Thomas L. Griffiths
- Sparse Inverse Covariance Matrix Estimation Using Quadratic Approximation Cho-jui Hsieh, Inderjit S. Dhillon, Pradeep K. Ravikumar, Mátyás A. Sustik
- Spike and Slab Variational Inference for Multi-Task and Multiple Kernel Learning Michalis K. Titsias, Miguel Lázaro-Gredilla
- Practical Variational Inference for Neural Networks Alex Graves
- Neuronal Adaptation for Sampling-Based Probabilistic Inference in Perceptual Bistability David P. Reichert, Peggy Series, Amos J. Storkey
- Beyond Spectral Clustering - Tight Relaxations of Balanced Graph Cuts Matthias Hein, Simon Setzer
- Fast and Accurate k-means For Large Datasets Michael Shindler, Alex Wong, Adam W. Meyerson
- A rational model of causal inference with continuous causes Thomas L. Griffiths, Michael James
- Quasi-Newton Methods for Markov Chain Monte Carlo Yichuan Zhang, Charles A. Sutton
- TD_gamma: Re-evaluating Complex Backups in Temporal Difference Learning George Konidaris, Scott Niekum, Philip S. Thomas
- Speedy Q-Learning Mohammad Ghavamzadeh, Hilbert J. Kappen, Mohammad G. Azar, Rémi Munos
- Regularized Laplacian Estimation and Fast Eigenvector Approximation Patrick O. Perry, Michael W. Mahoney
- Understanding the Intrinsic Memorability of Images Phillip Isola, Devi Parikh, Antonio Torralba, Aude Oliva
- The Local Rademacher Complexity of Lp-Norm Multiple Kernel Learning Marius Kloft, Gilles Blanchard
- Contextual Gaussian Process Bandit Optimization Andreas Krause, Cheng S. Ong
- Co-Training for Domain Adaptation Minmin Chen, Kilian Q. Weinberger, John Blitzer
- Autonomous Learning of Action Models for Planning Neville Mehta, Prasad Tadepalli, Alan Fern
- Gaussian process modulated renewal processes Yee W. Teh, Vinayak Rao
- Linear Submodular Bandits and their Application to Diversified Retrieval Yisong Yue, Carlos Guestrin
- Continuous-Time Regression Models for Longitudinal Networks Duy Q. Vu, David Hunter, Padhraic Smyth, Arthur U. Asuncion
- On Tracking The Partition Function Guillaume Desjardins, Yoshua Bengio, Aaron C. Courville
- Variational Gaussian Process Dynamical Systems Andreas Damianou, Michalis K. Titsias, Neil D. Lawrence
- Non-parametric Group Orthogonal Matching Pursuit for Sparse Learning with Multiple Kernels Vikas Sindhwani, Aurelie C. Lozano
- Selecting Receptive Fields in Deep Networks Adam Coates, Andrew Y. Ng
- Convergent Fitted Value Iteration with Linear Function Approximation Daniel J. Lizotte
- Algorithms for Hyper-Parameter Optimization James S. Bergstra, Rémi Bardenet, Yoshua Bengio, Balázs Kégl
- Neural Reconstruction with Approximate Message Passing (NeuRAMP) Alyson K. Fletcher, Sundeep Rangan, Lav R. Varshney, Aniruddha Bhargava
- Query-Aware MCMC Michael L. Wick, Andrew McCallum
- A reinterpretation of the policy oscillation phenomenon in approximate policy iteration Paul Wagner
- Inferring spike-timing-dependent plasticity from spike train data Ian Stevenson, Konrad Koerding
- Automated Refinement of Bayes Networks' Parameters based on Test Ordering Constraints Omar Z. Khan, Pascal Poupart, John-mark M. Agosta
- A Collaborative Mechanism for Crowdsourcing Prediction Problems Jacob D. Abernethy, Rafael M. Frongillo
- Hierarchically Supervised Latent Dirichlet Allocation Adler J. Perotte, Frank Wood, Noemie Elhadad, Nicholas Bartlett
- Select and Sample - A Model of Efficient Neural Inference and Learning Jacquelyn A. Shelton, Abdul S. Sheikh, Pietro Berkes, Joerg Bornschein, Joerg Luecke
- Selecting the State-Representation in Reinforcement Learning Odalric-ambrym Maillard, Daniil Ryabko, Rémi Munos
- Periodic Finite State Controllers for Efficient POMDP and DEC-POMDP Planning Joni K. Pajarinen, Jaakko Peltonen
- On the Universality of Online Mirror Descent Nati Srebro, Karthik Sridharan, Ambuj Tewari
- Demixed Principal Component Analysis Wieland Brendel, Ranulfo Romo, Christian K. Machens
- EigenNet: A Bayesian hybrid of generative and conditional models for sparse learning Feng Yan, Yuan Qi
- Hashing Algorithms for Large-Scale Learning Ping Li, Anshumali Shrivastava, Joshua L. Moore, Arnd C. König
- Rapid Deformable Object Detection using Dual-Tree Branch-and-Bound Iasonas Kokkinos
- Hierarchical Multitask Structured Output Learning for Large-scale Sequence Segmentation Nico Goernitz, Christian Widmer, Georg Zeller, Andre Kahles, Gunnar Rätsch, Sören Sonnenburg
- Predicting response time and error rates in visual search Bo Chen, Vidhya Navalpakkam, Pietro Perona
- Kernel Embeddings of Latent Tree Graphical Models Le Song, Eric P. Xing, Ankur P. Parikh
- Inference in continuous-time change-point models Florian Stimberg, Manfred Opper, Guido Sanguinetti, Andreas Ruttor
- High-dimensional regression with noisy and missing data: Provable guarantees with non-convexity Po-ling Loh, Martin J. Wainwright
- Exploiting spatial overlap to efficiently compute appearance distances between image windows Bogdan Alexe, Viviana Petrescu, Vittorio Ferrari
- Accelerated Adaptive Markov Chain for Partition Function Computation Stefano Ermon, Carla P. Gomes, Ashish Sabharwal, Bart Selman
Advances in Neural Information Processing Systems 25 (NIPS 2012)
The papers below appear in Advances in Neural Information Processing Systems 25 edited by F. Pereira and C.J.C. Burges and L. Bottou and K.Q. Weinberger .They are proceedings from the conference, "Neural Information Processing Systems 2012."
- Locally Uniform Comparison Image Descriptor Andrew Ziegler, Eric Christiansen, David Kriegman, Serge J. Belongie
- Learning from Distributions via Support Measure Machines Krikamol Muandet, Kenji Fukumizu, Francesco Dinuzzo, Prof. Bernhard Schölkopf
- Finding Exemplars from Pairwise Dissimilarities via Simultaneous Sparse Recovery Ehsan Elhamifar, Guillermo Sapiro, René Vidal
- Feature Clustering for Accelerating Parallel Coordinate Descent Chad Scherrer, Ambuj Tewari, Mahantesh Halappanavar, David Haglin
- Multi-scale Hyper-time Hardware Emulation of Human Motor Nervous System Based on Spiking Neurons using FPGA C. M. Niu, Sirish Nandyala, Won J. Sohn, Terence Sanger
- Active Learning of Model Evidence Using Bayesian Quadrature Michael Osborne, Roman Garnett, Zoubin Ghahramani, David K. Duvenaud, Stephen J. Roberts, Carl E. Rasmussen
- Coupling Nonparametric Mixtures via Latent Dirichlet Processes Dahua Lin, John W. Fisher
- Nonparametric Max-Margin Matrix Factorization for Collaborative Prediction Minjie Xu, Jun Zhu, Bo Zhang
- Bayesian Hierarchical Reinforcement Learning Feng Cao, Soumya Ray
- Dynamic Pruning of Factor Graphs for Maximum Marginal Prediction Christoph H. Lampert
- Local Supervised Learning through Space Partitioning Joseph Wang, Venkatesh Saligrama
- A Generative Model for Parts-based Object Segmentation S. Eslami, Christopher Williams
- Super-Bit Locality-Sensitive Hashing Jianqiu Ji, Jianmin Li, Shuicheng Yan, Bo Zhang, Qi Tian
- The Bethe Partition Function of Log-supermodular Graphical Models Nicholas Ruozzi
- Random Utility Theory for Social Choice Hossein Azari, David Parks, Lirong Xia
- Putting Bayes to sleep Dmitry Adamskiy, Manfred K. Warmuth, Wouter M. Koolen
- A new metric on the manifold of kernel matrices with application to matrix geometric means Suvrit Sra
- Mandatory Leaf Node Prediction in Hierarchical Multilabel Classification Wei Bi, James T. Kwok
- Smooth-projected Neighborhood Pursuit for High-dimensional Nonparanormal Graph Estimation Tuo Zhao, Kathryn Roeder, Han Liu
- Semiparametric Principal Component Analysis Fang Han, Han Liu
- Coding efficiency and detectability of rate fluctuations with non-Poisson neuronal firing Shinsuke Koyama
- The representer theorem for Hilbert spaces: a necessary and sufficient condition Francesco Dinuzzo, Prof. Bernhard Schölkopf
- On the (Non-)existence of Convex, Calibrated Surrogate Losses for Ranking Clément Calauzènes, Nicolas Usunier, Patrick Gallinari
- Exploration in Model-based Reinforcement Learning by Empirically Estimating Learning Progress Manuel Lopes, Tobias Lang, Marc Toussaint, Pierre-yves Oudeyer
- Supervised Learning with Similarity Functions Purushottam Kar, Prateek Jain
- Cocktail Party Processing via Structured Prediction Yuxuan Wang, Deliang Wang
- Robustness and risk-sensitivity in Markov decision processes Takayuki Osogami
- Dynamical And-Or Graph Learning for Object Shape Modeling and Detection Xiaolong Wang, Liang Lin
- Adaptive Stratified Sampling for Monte-Carlo integration of Differentiable functions Alexandra Carpentier, Rémi Munos
- Distributed Non-Stochastic Experts Varun Kanade, Zhenming Liu, Bozidar Radunovic
- Learning Image Descriptors with the Boosting-Trick Tomasz Trzcinski, Mario Christoudias, Vincent Lepetit, Pascal Fua
- Fast Resampling Weighted v-Statistics Chunxiao Zhou, Jiseong Park, Yun Fu
- Multi-task Vector Field Learning Binbin Lin, Sen Yang, Chiyuan Zhang, Jieping Ye, Xiaofei He
- Memorability of Image Regions Aditya Khosla, Jianxiong Xiao, Antonio Torralba, Aude Oliva
- Nonparametric Bayesian Inverse Reinforcement Learning for Multiple Reward Functions Jaedeug Choi, Kee-eung Kim
- Automatic Feature Induction for Stagewise Collaborative Filtering Joonseok Lee, Mingxuan Sun, Seungyeon Kim, Guy Lebanon
- Selective Labeling via Error Bound Minimization Quanquan Gu, Tong Zhang, Jiawei Han, Chris H. Ding
- Volume Regularization for Binary Classification Koby Crammer, Tal Wagner
- Image Denoising and Inpainting with Deep Neural Networks Junyuan Xie, Linli Xu, Enhong Chen
- Max-Margin Structured Output Regression for Spatio-Temporal Action Localization Du Tran, Junsong Yuan
- Transelliptical Component Analysis Fang Han, Han Liu
- Action-Model Based Multi-agent Plan Recognition Hankz H. Zhuo, Qiang Yang, Subbarao Kambhampati
- Visual Recognition using Embedded Feature Selection for Curvature Self-Similarity Angela Eigenstetter, Bjorn Ommer
- Non-parametric Approximate Dynamic Programming via the Kernel Method Nikhil Bhat, Vivek Farias, Ciamac C. Moallemi
- Optimal Regularized Dual Averaging Methods for Stochastic Optimization Xi Chen, Qihang Lin, Javier Pena
- The variational hierarchical EM algorithm for clustering hidden Markov models Emanuele Coviello, Gert R. Lanckriet, Antoni B. Chan
- Truncation-free Online Variational Inference for Bayesian Nonparametric Models Chong Wang, David M. Blei
- 3D Social Saliency from Head-mounted Cameras Hyun S. Park, Eakta Jain, Yaser Sheikh
- Context-Sensitive Decision Forests for Object Detection Peter Kontschieder, Samuel R. Bulò, Antonio Criminisi, Pushmeet Kohli, Marcello Pelillo, Horst Bischof
- Learning Invariant Representations of Molecules for Atomization Energy Prediction Grégoire Montavon, Katja Hansen, Siamac Fazli, Matthias Rupp, Franziska Biegler, Andreas Ziehe, Alexandre Tkatchenko, Anatole V. Lilienfeld, Klaus-Robert Müller
- Bandit Algorithms boost Brain Computer Interfaces for motor-task selection of a brain-controlled button Joan Fruitet, Alexandra Carpentier, Maureen Clerc, Rémi Munos
- Multiplicative Forests for Continuous-Time Processes Jeremy Weiss, Sriraam Natarajan, David Page
- Patient Risk Stratification for Hospital-Associated C. diff as a Time-Series Classification Task Jenna Wiens, Eric Horvitz, John V. Guttag
- Nyström Method vs Random Fourier Features: A Theoretical and Empirical Comparison Tianbao Yang, Yu-feng Li, Mehrdad Mahdavi, Rong Jin, Zhi-Hua Zhou
- Multiclass Learning Approaches: A Theoretical Comparison with Implications Amit Daniely, Sivan Sabato, Shai S. Shwartz
- Stochastic Gradient Descent with Only One Projection Mehrdad Mahdavi, Tianbao Yang, Rong Jin, Shenghuo Zhu, Jinfeng Yi
- Neuronal Spike Generation Mechanism as an Oversampling, Noise-shaping A-to-D converter Dmitri B. Chklovskii, Daniel Soudry
- Deep Spatio-Temporal Architectures and Learning for Protein Structure Prediction Pietro D. Lena, Ken Nagata, Pierre F. Baldi
- Assessing Blinding in Clinical Trials Ognjen Arandjelovic
- Scalable nonconvex inexact proximal splitting Suvrit Sra
- Learning to Discover Social Circles in Ego Networks Jure Leskovec, Julian J. Mcauley
- A Conditional Multinomial Mixture Model for Superset Label Learning Liping Liu, Thomas G. Dietterich
- Majorization for CRFs and Latent Likelihoods Tony Jebara, Anna Choromanska
- Ensemble weighted kernel estimators for multivariate entropy estimation Kumar Sricharan, Alfred O. Hero
- Efficient high dimensional maximum entropy modeling via symmetric partition functions Paul Vernaza, Drew Bagnell
- Discriminatively Trained Sparse Code Gradients for Contour Detection Ren Xiaofeng, Liefeng Bo
- Analyzing 3D Objects in Cluttered Images Mohsen Hejrati, Deva Ramanan
- Nonconvex Penalization Using Laplace Exponents and Concave Conjugates Zhihua Zhang, Bojun Tu
- 3D Object Detection and Viewpoint Estimation with a Deformable 3D Cuboid Model Sanja Fidler, Sven Dickinson, Raquel Urtasun
- Structured Learning of Gaussian Graphical Models Karthik Mohan, Mike Chung, Seungyeop Han, Daniela Witten, Su-in Lee, Maryam Fazel
- A Polylog Pivot Steps Simplex Algorithm for Classification Elad Hazan, Zohar Karnin
- Shifting Weights: Adapting Object Detectors from Image to Video Kevin Tang, Vignesh Ramanathan, Li Fei-fei, Daphne Koller
- A Scalable CUR Matrix Decomposition Algorithm: Lower Time Complexity and Tighter Bound Shusen Wang, Zhihua Zhang
- Convolutional-Recursive Deep Learning for 3D Object Classification Richard Socher, Brody Huval, Bharath Bath, Christopher D. Manning, Andrew Y. Ng
- Semi-Supervised Domain Adaptation with Non-Parametric Copulas David Lopez-paz, Jose M. Hernández-lobato, Prof. Bernhard Schölkopf
- Identification of Recurrent Patterns in the Activation of Brain Networks Firdaus Janoos, Weichang Li, Niranjan Subrahmanya, Istvan Morocz, William Wells
- Density-Difference Estimation Masashi Sugiyama, Takafumi Kanamori, Taiji Suzuki, Marthinus D. Plessis, Song Liu, Ichiro Takeuchi
- Variational Inference for Crowdsourcing Qiang Liu, Jian Peng, Alexander T. Ihler
- MCMC for continuous-time discrete-state systems Vinayak Rao, Yee W. Teh
- A P300 BCI for the Masses: Prior Information Enables Instant Unsupervised Spelling Pieter-jan Kindermans, Hannes Verschore, David Verstraeten, Benjamin Schrauwen
- Learning about Canonical Views from Internet Image Collections Elad Mezuman, Yair Weiss
- Learning High-Density Regions for a Generalized Kolmogorov-Smirnov Test in High-Dimensional Data Assaf Glazer, Michael Lindenbaum, Shaul Markovitch
- Multiresolution Gaussian Processes Emily Fox, David B. Dunson
- Localizing 3D cuboids in single-view images Jianxiong Xiao, Bryan Russell, Antonio Torralba
- Newton-Like Methods for Sparse Inverse Covariance Estimation Figen Oztoprak, Jorge Nocedal, Steven Rennie, Peder A. Olsen
- Learning to Align from Scratch Gary Huang, Marwan Mattar, Honglak Lee, Erik G. Learned-miller
- Homeostatic plasticity in Bayesian spiking networks as Expectation Maximization with posterior constraints Stefan Habenschuss, Johannes Bill, Bernhard Nessler
- Clustering Aggregation as Maximum-Weight Independent Set Nan Li, Longin J. Latecki
- Topology Constraints in Graphical Models Marcelo Fiori, Pablo Musé, Guillermo Sapiro
- Transelliptical Graphical Models Han Liu, Fang Han, Cun-hui Zhang
- Kernel Latent SVM for Visual Recognition Weilong Yang, Yang Wang, Arash Vahdat, Greg Mori
- Learning Partially Observable Models Using Temporally Abstract Decision Trees Erik Talvitie
- Proximal Newton-type methods for convex optimization Jason D. Lee, Yuekai Sun, Michael Saunders
- Regularized Off-Policy TD-Learning Bo Liu, Sridhar Mahadevan, Ji Liu
- Multi-criteria Anomaly Detection using Pareto Depth Analysis Ko-jen Hsiao, Kevin Xu, Jeff Calder, Alfred O. Hero
- Synchronization can Control Regularization in Neural Systems via Correlated Noise Processes Jake Bouvrie, Jean-jeacques Slotine
- Calibrated Elastic Regularization in Matrix Completion Tingni Sun, Cun-hui Zhang
- Predicting Action Content On-Line and in Real Time before Action Onset – an Intracranial Human Study Uri Maoz, Shengxuan Ye, Ian Ross, Adam Mamelak, Christof Koch
- Searching for objects driven by context Bogdan Alexe, Nicolas Heess, Yee W. Teh, Vittorio Ferrari
- Timely Object Recognition Sergey Karayev, Tobias Baumgartner, Mario Fritz, Trevor Darrell
- Nonparanormal Belief Propagation (NPNBP) Gal Elidan, Cobi Cario
- Deep Representations and Codes for Image Auto-Annotation Ryan Kiros, Csaba Szepesvári
- A Spectral Algorithm for Latent Dirichlet Allocation Anima Anandkumar, Dean P. Foster, Daniel J. Hsu, Sham M. Kakade, Yi-kai Liu
- Learning Halfspaces with the Zero-One Loss: Time-Accuracy Tradeoffs Aharon Birnbaum, Shai S. Shwartz
- Matrix reconstruction with the local max norm Rina Foygel, Nathan Srebro, Ruslan R. Salakhutdinov
- Analog readout for optical reservoir computers Anteo Smerieri, François Duport, Yvon Paquot, Benjamin Schrauwen, Marc Haelterman, Serge Massar
- Accuracy at the Top Stephen Boyd, Corinna Cortes, Mehryar Mohri, Ana Radovanovic
- Minimizing Sparse High-Order Energies by Submodular Vertex-Cover Andrew Delong, Olga Veksler, Anton Osokin, Yuri Boykov
- Perfect Dimensionality Recovery by Variational Bayesian PCA Shinichi Nakajima, Ryota Tomioka, Masashi Sugiyama, S. D. Babacan
- Mirror Descent Meets Fixed Share (and feels no regret) Nicolò Cesa-bianchi, Pierre Gaillard, Gabor Lugosi, Gilles Stoltz
- Near-optimal Differentially Private Principal Components Kamalika Chaudhuri, Anand Sarwate, Kaushik Sinha
- Random function priors for exchangeable arrays with applications to graphs and relational data James Lloyd, Peter Orbanz, Zoubin Ghahramani, Daniel M. Roy
- Inverse Reinforcement Learning through Structured Classification Edouard Klein, Matthieu Geist, Bilal Piot, Olivier Pietquin
- Augmented-SVM: Automatic space partitioning for combining multiple non-linear dynamics Ashwini Shukla, Aude Billard
- Efficient Bayes-Adaptive Reinforcement Learning using Sample-Based Search Arthur Guez, David Silver, Peter Dayan
- Dimensionality Dependent PAC-Bayes Margin Bound Chi Jin, Liwei Wang
- Latent Graphical Model Selection: Efficient Methods for Locally Tree-like Graphs Anima Anandkumar, Ragupathyraj Valluvan
- Learning Mixtures of Tree Graphical Models Anima Anandkumar, Daniel J. Hsu, Furong Huang, Sham M. Kakade
- Hamming Distance Metric Learning Mohammad Norouzi, David J. Fleet, Ruslan R. Salakhutdinov
- Spiking and saturating dendrites differentially expand single neuron computation capacity Romain Cazé, Mark Humphries, Boris S. Gutkin
- Clustering by Nonnegative Matrix Factorization Using Graph Random Walk Zhirong Yang, Tele Hao, Onur Dikmen, Xi Chen, Erkki Oja
- Delay Compensation with Dynamical Synapses Chi Fung, K. Wong, Si Wu
- ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton
- Recognizing Activities by Attribute Dynamics Weixin Li, Nuno Vasconcelos
- Compressive Sensing MRI with Wavelet Tree Sparsity Chen Chen, Junzhou Huang
- Training sparse natural image models with a fast Gibbs sampler of an extended state space Lucas Theis, Jascha Sohl-dickstein, Matthias Bethge
- A Bayesian Approach for Policy Learning from Trajectory Preference Queries Aaron Wilson, Alan Fern, Prasad Tadepalli
- GenDeR: A Generic Diversified Ranking Algorithm Jingrui He, Hanghang Tong, Qiaozhu Mei, Boleslaw Szymanski
- On Multilabel Classification and Ranking with Partial Feedback Claudio Gentile, Francesco Orabona
- The Lovász ϑ function, SVMs and finding large dense subgraphs Vinay Jethava, Anders Martinsson, Chiranjib Bhattacharyya, Devdatt Dubhashi
- Multi-Task Averaging Sergey Feldman, Maya Gupta, Bela Frigyik
- Unsupervised Structure Discovery for Semantic Analysis of Audio Sourish Chaudhuri, Bhiksha Raj
- A Marginalized Particle Gaussian Process Regression Yali Wang, Brahim Chaib-draa
- Angular Quantization-based Binary Codes for Fast Similarity Search Yunchao Gong, Sanjiv Kumar, Vishal Verma, Svetlana Lazebnik
- Optimal kernel choice for large-scale two-sample tests Arthur Gretton, Dino Sejdinovic, Heiko Strathmann, Sivaraman Balakrishnan, Massimiliano Pontil, Kenji Fukumizu, Bharath K. Sriperumbudur
- Factoring nonnegative matrices with linear programs Ben Recht, Christopher Re, Joel Tropp, Victor Bittorf
- Large Scale Distributed Deep Networks Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Marc'aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Quoc V. Le, Andrew Y. Ng
- Statistical Consistency of Ranking Methods in A Rank-Differentiable Probability Space Yanyan Lan, Jiafeng Guo, Xueqi Cheng, Tie-yan Liu
- Wavelet based multi-scale shape features on arbitrary surfaces for cortical thickness discrimination Won H. Kim, Deepti Pachauri, Charles Hatt, Moo. K. Chung, Sterling Johnson, Vikas Singh
- A Convex Formulation for Learning Scale-Free Networks via Submodular Relaxation Aaron Defazio, Tibério S. Caetano
- Fused sparsity and robust estimation for linear models with unknown variance Arnak Dalalyan, Yin Chen
- How Prior Probability Influences Decision Making: A Unifying Probabilistic Model Yanping Huang, Timothy Hanks, Mike Shadlen, Abram L. Friesen, Rajesh P. Rao
- High-Order Multi-Task Feature Learning to Identify Longitudinal Phenotypic Markers for Alzheimer's Disease Progression Prediction Hua Wang, Feiping Nie, Heng Huang, Jingwen Yan, Sungeun Kim, Shannon Risacher, Andrew Saykin, Li Shen
- Symmetric Correspondence Topic Models for Multilingual Text Analysis Kosuke Fukumasu, Koji Eguchi, Eric P. Xing
- Effective Split-Merge Monte Carlo Methods for Nonparametric Models of Sequential Data Michael C. Hughes, Emily Fox, Erik B. Sudderth
- Efficient coding provides a direct link between prior and likelihood in perceptual Bayesian inference Xue-xin Wei, Alan A. Stocker
- Efficient Sampling for Bipartite Matching Problems Maksims Volkovs, Richard S. Zemel
- Learning visual motion in recurrent neural networks Marius Pachitariu, Maneesh Sahani
- Learned Prioritization for Trading Off Accuracy and Speed Jiarong Jiang, Adam Teichert, Jason Eisner, Hal Daume
- Value Pursuit Iteration Amir M. Farahmand, Doina Precup
- Compressive neural representation of sparse, high-dimensional probabilities Xaq Pitkow
- Graphical Models via Generalized Linear Models Eunho Yang, Genevera Allen, Zhandong Liu, Pradeep K. Ravikumar
- CPRL -- An Extension of Compressive Sensing to the Phase Retrieval Problem Henrik Ohlsson, Allen Yang, Roy Dong, Shankar Sastry
- Co-Regularized Hashing for Multimodal Data Yi Zhen, Dit-Yan Yeung
- Convergence and Energy Landscape for Cheeger Cut Clustering Xavier Bresson, Thomas Laurent, David Uminsky, James V. Brecht
- Symbolic Dynamic Programming for Continuous State and Observation POMDPs Zahra Zamani, Scott Sanner, Pascal Poupart, Kristian Kersting
- Bayesian Probabilistic Co-Subspace Addition Lei Shi
- Scaled Gradients on Grassmann Manifolds for Matrix Completion Thanh Ngo, Yousef Saad
- Q-MKL: Matrix-induced Regularization in Multi-Kernel Learning with Applications to Neuroimaging Chris Hinrichs, Vikas Singh, Jiming Peng, Sterling Johnson
- Privacy Aware Learning Martin J. Wainwright, Michael I. Jordan, John C. Duchi
- Finite Sample Convergence Rates of Zero-Order Stochastic Optimization Methods Andre Wibisono, Martin J. Wainwright, Michael I. Jordan, John C. Duchi
- Hierarchical Optimistic Region Selection driven by Curiosity Odalric-ambrym Maillard
- Sparse Prediction with the k-Support Norm Andreas Argyriou, Rina Foygel, Nathan Srebro
- Active Learning of Multi-Index Function Models Tyagi Hemant, Volkan Cevher
- Learning Multiple Tasks using Shared Hypotheses Koby Crammer, Yishay Mansour
- On-line Reinforcement Learning Using Incremental Kernel-Based Stochastic Factorization Doina Precup, Joelle Pineau, Andre S. Barreto
- Forward-Backward Activation Algorithm for Hierarchical Hidden Markov Models Kei Wakabayashi, Takao Miura
- Communication-Efficient Algorithms for Statistical Optimization Yuchen Zhang, Martin J. Wainwright, John C. Duchi
- Identifiability and Unmixing of Latent Parse Trees Daniel J. Hsu, Sham M. Kakade, Percy S. Liang
- Bayesian nonparametric models for ranked data Francois Caron, Yee W. Teh
- Feature-aware Label Space Dimension Reduction for Multi-label Classification Yao-nan Chen, Hsuan-tien Lin
- Stochastic optimization and sparse statistical recovery: Optimal algorithms for high dimensions Alekh Agarwal, Sahand Negahban, Martin J. Wainwright
- Graphical Gaussian Vector for Image Categorization Tatsuya Harada, Yasuo Kuniyoshi
- Joint Modeling of a Matrix with Associated Text via Latent Binary Features Xianxing Zhang, Lawrence Carin
- Proper losses for learning from partial labels Jesús Cid-sueiro
- Iterative Thresholding Algorithm for Sparse Inverse Covariance Estimation Benjamin Rolfs, Bala Rajaratnam, Dominique Guillot, Ian Wong, Arian Maleki
- Selecting Diverse Features via Spectral Regularization Abhimanyu Das, Anirban Dasgupta, Ravi Kumar
- Monte Carlo Methods for Maximum Margin Supervised Topic Models Qixia Jiang, Jun Zhu, Maosong Sun, Eric P. Xing
- Parametric Local Metric Learning for Nearest Neighbor Classification Jun Wang, Alexandros Kalousis, Adam Woznica
- A Linear Time Active Learning Algorithm for Link Classification Nicolò Cesa-bianchi, Claudio Gentile, Fabio Vitale, Giovanni Zappella
- Bayesian Warped Gaussian Processes Miguel Lázaro-Gredilla
- Nonparametric Reduced Rank Regression Rina Foygel, Michael Horrell, Mathias Drton, John D. Lafferty
- Multiresolution analysis on the symmetric group Risi Kondor, Walter Dempsey
- Isotropic Hashing Weihao Kong, Wu-jun Li
- On Lifting the Gibbs Sampling Algorithm Deepak Venugopal, Vibhav Gogate
- On the connections between saliency and tracking Vijay Mahadevan, Nuno Vasconcelos
- Convex Multi-view Subspace Learning Martha White, Xinhua Zhang, Dale Schuurmans, Yao-liang Yu
- Spectral learning of linear dynamics from generalised-linear observations with application to neural population data Lars Buesing, Jakob H. Macke, Maneesh Sahani
- Mixability in Statistical Learning Tim V. Erven, Peter Grünwald, Mark D. Reid, Robert C. Williamson
- Waveform Driven Plasticity in BiFeO3 Memristive Devices: Model and Implementation Christian Mayr, Paul Stärke, Johannes Partzsch, Love Cederstroem, Rene Schüffny, Yao Shuai, Nan Du, Heidemarie Schmidt
- A lattice filter model of the visual pathway Karol Gregor, Dmitri B. Chklovskii
- Semantic Kernel Forests from Multiple Taxonomies Sung Ju Hwang, Kristen Grauman, Fei Sha
- Causal discovery with scale-mixture model for spatiotemporal variance dependencies Zhitang Chen, Kun Zhang, Laiwan Chan
- Natural Images, Gaussian Mixtures and Dead Leaves Daniel Zoran, Yair Weiss
- Dual-Space Analysis of the Sparse Linear Model Yi Wu, David P. Wipf
- Active Comparison of Prediction Models Christoph Sawade, Niels Landwehr, Tobias Scheffer
- Online Regret Bounds for Undiscounted Continuous Reinforcement Learning Ronald Ortner, Daniil Ryabko
- Semi-Crowdsourced Clustering: Generalizing Crowd Labeling by Robust Distance Metric Learning Jinfeng Yi, Rong Jin, Shaili Jain, Tianbao Yang, Anil K. Jain
- Learning curves for multi-task Gaussian process regression Peter Sollich, Simon Ashton
- Kernel Hyperalignment Alexander Lorbert, Peter J. Ramadge
- Multiple Choice Learning: Learning to Produce Multiple Structured Outputs Abner Guzmán-rivera, Dhruv Batra,