第九章 多元函数微分法及其应用
第二节 偏导数
偏导数的定义及其计算法
二元函数z=f(x,y)z = f(x, y)z=f(x,y)对于xxx的偏导数有如下定义:
定义 设函数z=f(x,y)z = f(x, y)z=f(x,y) 在点(x0,y0)(x_0, y_0)(x0,y0)的某一邻域内有定义,当yyy固定在y0y_0y0而xxx在x0x_0x0处有增量Δx\Delta xΔx时,相应地函数有增量
f(x0+Δx,y0)−f(x0,y0)f(x_0 + \Delta x, y_0) - f(x_0, y_0)f(x0+Δx,y0)−f(x0,y0)
如果
limΔx→0f(x0+Δx,y0)−f(x0,y0)Δx(2-1)\lim\limits_{\Delta x \to 0}{\dfrac{f(x_0 + \Delta x, y_0) -f(x_0, y_0)}{\Delta x}} \tag {2-1}Δx→0limΔxf(x0+Δx,y0)−f(x0,y0)(2-1)
存在,那么称此极限为函数z=f(x,y)z = f(x, y)z=f(x,y)在点(x0,y0)(x_0, y_0)(x0,y0)处对xxx的偏导数,记作
∂z∂x∣x=x0y=y0\left. \dfrac{\partial z}{\partial x} \right|_{x = x_0\atop y = y_0}∂x∂z∣∣∣∣y=y0x=x0, ∂f∂x∣x=x0y=y0\left. \dfrac{\partial f}{\partial x}\right |_{x = x_0 \atop y = y_0}∂x∂f∣∣∣∣y=y0x=x0,zx∣x=x0y=y0\left .z_x\right|_{x = x_0 \atop y = y_0}zx∣y=y0x=x0 或 fx(x0,y0)f_x(x_0, y_0)fx(x0,y0)
极限(2-1)可以表示为
fx(x0,y0)=limΔx→0f(x0+Δx)−f(x0,y0)Δxf_x(x_0, y_0) = \lim\limits_{\Delta x \to 0}{\dfrac{f(x_0 + \Delta x) - f(x_0, y_0)}{\Delta x}}fx(x0,y0)=Δx→0limΔxf(x0+Δx)−f(x0,y0)
类似地,函数z=f(x,y)z = f(x, y)z=f(x,y)在点(x0,y0)(x_0, y_0)(x0,y0)处对yyy的偏导数定义为
limΔy→0f(x0,y0+Δy)−f(x0,y0)Δy\lim\limits_{\Delta y \to 0}{\dfrac{f(x_0, y_0 + \Delta y) - f(x_0, y_0)}{\Delta y}}Δy→0limΔyf(x0,y0+Δy)−f(x0,y0)
记作∂z∂y∣x=x0y=y0\left. \dfrac{\partial z}{\partial y}\right |_{x = x_0 \atop y = y_0}∂y∂z∣∣∣∣y=y0x=x0 ,∂f∂y∣x=x0y=y0\left. \dfrac{\partial f}{\partial y}\right |_{x = x_0 \atop y = y_0}∂y∂f∣∣∣∣y=y0x=x0, zy∣x=x0y=y0\left . z_y \right|_{x = x_0 \atop y = y_0}zy∣y=y0x=x0 或 fy(x0,y0)f_y(x_0, y_0)fy(x0,y0)
三元函数的偏导数
fx(x,y,z)=limΔx→0f(x+Δx,y,z)−f(x,y,z)Δxf_x(x, y, z) = \lim\limits_{\Delta x \to 0}{\dfrac{f(x + \Delta x, y, z) - f(x, y, z)}{\Delta x}}fx(x,y,z)=Δx→0limΔxf(x+Δx,y,z)−f(x,y,z)
例题
例 1 求z=x2+3xy+y2z = x^2 + 3xy + y^2z=x2+3xy+y2在点(1,2)(1, 2)(1,2)处的偏导数.
例 2 求z=x2sin2yz = x^2\sin2yz=x2sin2y的偏导数.
例 3 设 z=xy(x>0,x≠1)z = x ^y (x > 0, x \neq1)z=xy(x>0,x=1),求证:
xy∂z∂x+1lnx∂z∂y=2z\dfrac{x}{y}\dfrac{\partial z}{\partial x} + \dfrac{1}{\ln x}\dfrac{\partial z}{\partial y} = 2zyx∂x∂z+lnx1∂y∂z=2z.
例 4 求 r=x2+y2+z2r = \sqrt{x^2 + y^2 + z^2}r=x2+y2+z2的偏导数.
例 5 已知理想气体的状态方程pV=RTpV = RTpV=RT(RRR为常量),求证:
∂p∂V⋅∂V∂T⋅∂T∂p=−1.\dfrac{\partial p}{\partial V} \cdot \dfrac{\partial V}{\partial T} \cdot \dfrac{\partial T}{\partial p} = -1.∂V∂p⋅∂T∂V⋅∂p∂T=−1.
二元函数偏导数的几何意义.
高阶偏导数
未完待续⋯\cdots⋯
本文介绍了多元函数偏导数的基本概念与计算方法,包括偏导数的定义、计算公式及几何意义,并通过多个例题进行说明。同时,还探讨了高阶偏导数的相关内容。
1929

被折叠的 条评论
为什么被折叠?



