LeetCode 热题 HOT 100 - 543. 二叉树的直径

这篇博客介绍了如何使用深度优先搜索(DFS)算法来计算二叉树的直径,即树中任意两个节点之间的最长路径。通过递归遍历二叉树的左子树和右子树,计算以每个节点为起点的路径长度,并更新全局最大值。算法的时间复杂度为O(N),空间复杂度为O(Height),其中N是节点数量,Height是树的高度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

思路:深度优先搜索(利用递归函数做遍历)

首先我们知道一条路径的长度为该路径经过的节点数减一,所以求直径(即求路径长度的最大值)等效于求路径经过节点数的最大值减一。

而任意一条路径均可以被看作由某个节点为起点,从其左儿子和右儿子向下遍历的路径拼接得到。

——时间复杂度:O(N),其中 N 为二叉树的节点数,即遍历一棵二叉树的时间复杂度,每个结点只被访问一次。

——空间复杂度:O(Height),其中 Height 为二叉树的高度。由于递归函数在递归过程中需要为每一层递归函数分配栈空间,所以这里需要额外的空间且该空间取决于递归的深度,而递归的深度显然为二叉树的高度,并且每次递归调用的函数里又只用了常数个变量,所以所需空间复杂度为 O(Height) 。

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    int ans; //节点node为起点的路径经过节点数的最大值 
    public int diameterOfBinaryTree(TreeNode root) {
        ans = 1;
        depth(root);
        return ans - 1; //二叉树的直径就是所有节点的最大值减一
    }
    public int depth(TreeNode node) {
        if (node == null) {
            return 0; // 访问到空节点了,返回0
        }
        int L = depth(node.left); // 左儿子为根的子树的深度
        int R = depth(node.right); // 右儿子为根的子树的深度
        ans = Math.max(ans, L+R+1); // 计算d_node即L+R+1 并更新ans
        return Math.max(L, R) + 1; // 返回该节点为根的子树的深度
    }
}

 

### LeetCode 298 二叉树最长连续序列 对于LeetCode上的编号为298的目“二叉树中最长的连续序列”,目标是在给定的二叉树中找到最长的连续递增路径长度。这里的连续意味着节点值依次增加1。 #### 解决方案概述 解决方案涉及深度优先搜索(DFS)遍历整棵树,同时跟踪当前路径是否构成连续递增序列以及该序列的长度。当遇到不满足条件的情况时,则重置计数器并继续探索其他分支[^4]。 #### Python代码实现 下面是一个基于上述思路的具体Python实现: ```python class Solution(object): def longestConsecutive(self, root): """ :type root: TreeNode :rtype: int """ def dfs(node, parent_val, cur_length): if not node: return # 如果当前节点值正好是父节点值加一,则认为找到了一个新的连续部分 if node.val == parent_val + 1: nonlocal max_length max_length = max(max_length, cur_length + 1) # 继续向下层传递更新后的参数 dfs(node.left, node.val, cur_length + 1) dfs(node.right, node.val, cur_length + 1) else: # 否则重新开始计算新的潜在连续序列 dfs(node.left, node.val, 1) dfs(node.right, node.val, 1) max_length = 0 # 初始化调用栈 dfs(root, float('-inf'), 0) return max_length ``` 此方法通过递归方式访问每一个节点,并利用`parent_val`和`cur_length`两个额外参数来帮助判断是否存在连续关系及其对应的长度变化情况。最终结果保存于全局变量`max_length`之中,在完成整个树形结构扫描之后返回作为答案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值