本文来自 http://www.jyeoo.com/math/ques/detail/6ed4f309-4bb6-4383-9548-584f8c37066d
证明:易求得数列开初的一些项为:1,1,6,41,281,1926,…,
注意到,a1+a2+2=22,a2+a3+2=32,a3+a4+2=72,a4+a5+2=182,…,构作数列{xn}:x1=2,x2=3,xn=3xn-1-xn-2,n≥3,则对每个n∈N*,xn为正整数.
我们来证明:对于每个n∈N*,皆有:an+an+1+2=
x |
2
n
|
引理:数列{xn}满足:对于每个k∈N*,xkxk+2−
x |
2
k+1
|
引理证明:令f(k)=xkxk+2−
x |
2
k+1
|
则f(k)−f(k−1)=(xkxk+2−
x |
2
k+1
|
x |
2
k
|
=(xkxk+2+
x |
2
k
|
x |
2
k+1
|
=xk(xk+2+xk)-xk+1(xk+1+xk-1)
=3xkxk+1-3xk+1xk=0.
所以f(k)=f(k-1),于是f(k)=f(k−1)=f(k−2)=…=f(1)=x1x3−
x |
2
2
|
回到本题,对n归纳,据数列{an}的定义,a1+a2+2=4=
x |
2
1
|
x |
2
2
|
若结论直至n(n≥2)皆已成立,则对于n+1,
有an+1+an+2+2=(7an-an-1)+(7an+1-an)+2
=7(an+an+1+2)-(an-1+an+2)-10
=7
x |
2
n
|
x |
2
n−1
|
=(3xn)2−
x |
2
n−1
|
x |
2
n
|
=(3xn−xn−1)(3xn+xn−1)−2
x |
2
n
|
=xn+1(xn+1+2xn−1)−2
x |
2
n
|
=
x |
2
n+1
|
x |
2
n
|
=
x |
2
n+1
|
即在n+1时结论也成立.
故本题得证.