目录
自建一个tensor理解池化
最大池化
nn.MaxPool2d
import torch
from torch import nn
input = torch.randn(1, 3, 5, 5)
class ZiDingYi(nn.Module):
def __init__(self):
super(ZiDingYi, self).__init__()
self.maxpool1 = nn.MaxPool2d(kernel_size=(3, 3), stride=(2, 2))
def forward(self, x):
x = self.maxpool1(x)
return x
zidingyi = ZiDingYi()
print(zidingyi)
output = zidingyi(input)
print(input)
print(output)
结果:
最大池化操作,池化区域大小为3×3,步长为2
ZiDingYi(
(maxpool1): MaxPool2d(kernel_size=(3, 3), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)
)
tensor([[[[ 1.5797, 0.1586, -1.6101, -1.2335, -0.0374],
[-0.3541, 0.5332, -0.4232, -0.9439, -1.1685],
[-1.5927, -1.4457, 1.2221, 0.2481, 0.1824],
[-0.2517, 0.0480, -0.9640, 0.1537, -0.8519],
[-1.5356, -0.9889, -0.6552, 0.0652, 0.1927]],
[[-0.7988, 1.1190, 0.6354, -0.2665, 2.0248],
[ 0.1559, -0.0030, 0.7831, 0.5012, 0.23