点云滤波---半径滤波器

适用对象

滤除离群点的一种滤波方法。

工作原理

通过设定滤波半径,计算每个点在其半径范围内的其他点的个数。半径范围内其他点个数少于某一设定的阈值的点将被滤除。
在这里插入图片描述
如上图所示,假设设置半径为d,分别考察黄色、蓝色和绿色的三个点。若设置点个数阈值为1,则黄色点将被滤除;若设置点个数阈值为2,则黄色点和绿色点都将被滤除。

PCL核心代码实现

pcl::RadiusOutlierRemoval<pcl::PointXYZ> outrem;//创建半径滤波器对象
outrem.setInputCloud(pointCloud_raw);			//设置输入点云
outrem.setRadiusSearch(0.02);					//设置半径为2cm
outrem.setMinNeighborsInRadius(5);				//设置最小邻接点个数阈值,半径范围内其他点个数少于5的点将被滤除
outrem.filter(*pointCloud_filter);				//执行滤波

完整代码

#include <iostream>
#include <pcl/point_types.h>
#include <pcl/filters/radius_outlier_removal.h>
#include <pcl/filters/conditional_removal.h>

int main (int argc, char** argv)
{
  if (argc != 2)
  {
    std::cerr << "please specify command line arg '-r' or '-c'" << std::endl;
    exit(0);
  }
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZ>);

  // Fill in the cloud data
  cloud->width  = 5;
  cloud->height = 1;
  cloud->points.resize (cloud->width * cloud->height);

  for (size_t i = 0; i < cloud->points.size (); ++i)
  {
    cloud->points[i].x = 1024 * rand () / (RAND_MAX + 1.0f);
    cloud->points[i].y = 1024 * rand () / (RAND_MAX + 1.0f);
    cloud->points[i].z = 1024 * rand () / (RAND_MAX + 1.0f);
  }

  if (strcmp(argv[1], "-r") == 0){
    pcl::RadiusOutlierRemoval<pcl::PointXYZ> outrem;
    // build the filter
    outrem.setInputCloud(cloud);
    outrem.setRadiusSearch(0.8);
    outrem.setMinNeighborsInRadius (2);
    // apply filter
    outrem.filter (*cloud_filtered);
  }
  else if (strcmp(argv[1], "-c") == 0){
    // build the condition
    pcl::ConditionAnd<pcl::PointXYZ>::Ptr range_cond (new
      pcl::ConditionAnd<pcl::PointXYZ> ());
    range_cond->addComparison (pcl::FieldComparison<pcl::PointXYZ>::ConstPtr (new
      pcl::FieldComparison<pcl::PointXYZ> ("z", pcl::ComparisonOps::GT, 0.0)));
    range_cond->addComparison (pcl::FieldComparison<pcl::PointXYZ>::ConstPtr (new
      pcl::FieldComparison<pcl::PointXYZ> ("z", pcl::ComparisonOps::LT, 0.8)));
    // build the filter
    pcl::ConditionalRemoval<pcl::PointXYZ> condrem;
    condrem.setCondition (range_cond);
    condrem.setInputCloud (cloud);
    condrem.setKeepOrganized(true);
    // apply filter
    condrem.filter (*cloud_filtered);
  }
  else{
    std::cerr << "please specify command line arg '-r' or '-c'" << std::endl;
    exit(0);
  }
  std::cerr << "Cloud before filtering: " << std::endl;
  for (size_t i = 0; i < cloud->points.size (); ++i)
    std::cerr << "    " << cloud->points[i].x << " "
                        << cloud->points[i].y << " "
                        << cloud->points[i].z << std::endl;
  // display pointcloud after filtering
  std::cerr << "Cloud after filtering: " << std::endl;
  for (size_t i = 0; i < cloud_filtered->points.size (); ++i)
    std::cerr << "    " << cloud_filtered->points[i].x << " "
                        << cloud_filtered->points[i].y << " "
                        << cloud_filtered->points[i].z << std::endl;
  return (0);
}

参考资料

Removing outliers using a Conditional or RadiusOutlier removal

CloudCompare中的半径滤波器是指RadiusOutlierRemoval滤波器。它是一种基于点云数据中点与其周围邻居之间距离的滤波器。该滤波器通过移除距离邻居点过远的点来清除噪声或异常值。使用该滤波器时,需要设置一个半径参数,该参数决定了在每个点周围提取最近的邻居以计算平均值。较小的半径将更加严格地滤除异常值,而较大的半径则可能同时移除一些有效的点。因此,在使用半径滤波器时需要根据具体情况进行参数的选择。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [CloudCompare二次开发之如何通过PCL进行点云滤波?](https://blog.youkuaiyun.com/qq_40640910/article/details/130688224)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [CloudCompare——点云滤波](https://blog.youkuaiyun.com/qq_36686437/article/details/120011047)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值