深度学习论文理解3:Flexible, high performance convolutional neural networks for image classification

本文是11年Dan C.Ciresan的作品,主要贡献是提供了一种快速,全GPU部署的CNN计算框架,通过快速的GPU计算可以让作者尝试相对以前的神经网络更深的CNN,而且是仅仅使用监督学习的方式。

本来不想写本文的总结的,但是最近看了ImageNet上取得好成绩的网络,都是通过GPU(caffe,convnet)部署,仅仅通过监督学习的方式来训练更加深的CNN,所以打算总结一下本文,作为在GPU上通过监督学习来训练深度CNN的开篇(Dan不是第一个使用GPU计算CNN的,个人见解)。

一,介绍

……尽管在硬件上的进步,计算速度仍然是限制CNN发展的一个主要瓶颈。为了系统性地测试各种结构的影响,本文提供了一种快速GPU部署CNN框架。之前的GPU部署CNN都是为了满足GPU硬件的限制,或者使用一般的函数库,然而我们的GPU部署比较灵活而且是on-line的权值学习方式。我们的部署允许训练CNN时间是以天为单位,而不是月;这样我们可以探索更大的参数空间,研究各种结构的影响。

二.CNN

 2.1卷积层

C层的参数=f(特征图大小,特征图个数,filter尺寸,跳跃间隔因子,连接表)

采用valid的卷积方式,卷积后特征图大小关系,如下式:


n代表层数,M代表每层特征个数,x,y分别代表特征图的长宽。K代表filter,S代表跳跃间隔数。(貌似上面公式并不具有普遍性,因为自己在后面的一些论文用此公式是map的尺寸和公式的结果不一样,估计可能是和Stride的定义有关,再有就是填充像素的原因)

2.2 max-Pooling层

相比mean-Pooling,max-Pooling能够较快的收敛,选择更加具有不变性的特征,而且还能够增加泛化能力。Max-Pooling能够在更大的局域上具有不变性,下采样(降维)特征图按照Kx和Ky倍数。

2.3 分类层

需要选择Filter尺寸,

Spring Boot是一种便捷的框架,它可以快速地搭建Java应用程序,并且它对于集成其他组件和框架也十分方便。而Knife4j则是一种集成度很高的API文档工具,它可以将接口文档在Swagger的基础上大幅度优化。在Spring Boot中使用Knife4j整合API文档也非常简单。 首先,我们需要在Spring Boot项目中引入Knife4j依赖,可以在pom.xml文件中加入以下代码: ``` <dependency> <groupId>com.github.xiaoymin</groupId> <artifactId>knife4j-spring-boot-starter</artifactId> <version>2.2.7</version> </dependency> ``` 这样Knife4j就会被自动集成到Spring Boot的应用中。 接下来,我们需要在Controller方法上增加注解,并且配置一些信息才能生成接口文档。 ``` @GetMapping("/hello") @ApiOperation(value = "示例API接口", notes = "这是一个示例API接口") @ApiImplicitParams({ @ApiImplicitParam(name = "name", value = "用户名", required = true, dataType = "String", paramType = "header") }) public String hello(@RequestHeader String name){ return "Hello, " + name + "!"; } ``` 其中@GetMapping是Spring Boot的注解,用于标记这是一个GET请求。@ApiOperation和@ApiImplicitParams则是Knife4j的注解,它们分别用于注释方法和方法参数的信息。 最后,在启动Spring Boot应用后,访问http://localhost:8080/doc.html 就可以看到生成的接口文档了。这个文档列表会列出所有接口的URL、HTTP方法、请求参数、响应结果等信息,非常直观和有用。通过Knife4j可以使API文档生成更加高效、直观,方便开发者理解和调用接口
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值