图像分类经典卷积神经网络—ResNet论文翻译(中英文对照版)—Deep Residual Learning for Image Recognition(深度残差学习的图像识别)

图像分类经典论文翻译汇总:[翻译汇总]

翻译pdf文件下载:[下载地址]

此版为中英文对照版,纯中文版请稳步:[ResNet纯中文版]

Deep Residual Learning for Image Recognition

深度残差学习的图像识别

Kaiming He(何恺明) Xiangyu Zhang(张翔宇) Shaoqing Ren(任少卿) Jian Sun(孙剑)

Microsoft Research(微软研究院)

{kahe, v-xiangz, v-shren, jiansun}@microsoft.com

Abstract

Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers 8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers.

摘要

更深的神经网络更难训练。我们提出了一种残差学习框架来减轻网络训练,这些网络比以前使用的网络更深。我们明确地将层变为学习关于层输入的残差函数,而不是学习未参考的函数。我们提供了全面的经验证据说明这些残差网络很容易优化,并可以显著增加深度来提高准确性。在ImageNet数据集上我们评估了深度高达152层的残差网络——比VGG[40]8倍但仍具有较低的复杂度。这些残差网络的集合在ImageNet测试集上取得了3.57%的错误率。这个结果在ILSVRC 2015分类任务上赢得了第一名。我们也在CIFAR-10上分析了100层和1000层的残差网络。

The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

对于许多视觉识别任务而言,表示的深度是至关重要的。仅由于我们非常深度的表示,我们便在COCO目标检测数据集上得到了28%的相对提高。深度残差网络是我们向ILSVRCCOCO 2015竞赛提交的基础,我们也赢得了ImageNet检测任务,ImageNet定位任务,COCO检测和COCO分割任务的第一名。

1. Introduction

Deep convolutional neural networks [22, 21] have led to a series of breakthroughs for image classification [21, 49, 39]. Deep networks naturally integrate low/mid/high-level features [49] and classifiers in an end-to-end multi-layer fashion, and the “levels” of features can be enriched by the number of stacked layers (depth). Recent evidence [40, 43] reveals that network depth is of crucial importance, and the leading results [40, 43, 12, 16] on the challenging ImageNet dataset [35] all exploit very deep [40] models, with a depth of sixteen [40] to thirty [16]. Many other non-trivial visual recognition tasks [7, 11, 6, 32, 27] have also greatly benefited from very deep models.

1. 引言

深度卷积神经网络[22, 21]导致了图像分类[21, 49, 39]的一系列突破。深度网络自然地将低//高级特征[49]和分类器以端到端多层方式进行集成,特征的“级别”可以通过堆叠层的数量(深度)来丰富。最近的证据[40, 43]显示网络深度至关重要,在具有挑战性的ImageNet数据集上领先的结果都采用了“非常深”[40]的模型,深度从16 [40]30 [16]之间。许多其它重要的视觉识别任务[7, 11, 6, 32, 27]也从非常深的模型中得到了极大受益。

Driven by the significance of depth, a question arises: Is learning better networks as easy as stacking more layers? An obstacle to answering this question was the notorious problem of vanishing/exploding gradients [14, 1, 8], which hamper convergence from the beginning. This problem, however, has been largely addressed by normalized initialization [23, 8, 36, 12] and intermediate normalization layers [16], which enable networks with tens of layers to start converging for stochastic gradient descent (SGD) with backpropagation [22].

在深度重要性的推动下,出现了一个问题:学些更好的网络是否等同于堆叠更多的层呢?回答这个问题的一个障碍是梯度消失/爆炸[14, 1, 8]这个众所周知的问题,它从一开始就阻碍了收敛。然而,这个问题通过标准初始化[23, 8, 36, 12]和中间标准化层[16]在很大程度上已经解决,这使得数十层的网络能通过具有反向传播的随机梯度下降(SGD)开始收敛。

When deeper networks are able to start converging, a degradation problem has been exposed: with the network depth increasing, accuracy gets saturated (which might be unsurprising) and then degrades rapidly. Unexpectedly, such degradation is not caused by overfitting, and adding more layers to a suitably deep model leads to higher training error, as reported in [10, 41] and thoroughly verified by our experiments. Fig. 1 shows a typical example.

Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer “plain” networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

当更深的网络能够开始收敛时,暴露了一个退化问题:随着网络深度的增加,准确率达到饱和(这可能并不奇怪),然后迅速下降。意外的是,这种下降不是由过拟合引起的,并且在适当的深度模型上添加更多的层会导致更高的训练误差,正如[10, 41]中报告的那样,并且由我们的实验完全证实。图1显示了一个典型的例子。

1. 20层和56层的“简单”网络在CIFAR-10上的训练误差(左)和测试误差(右)。更深的网络有更高的训练误差和测试误差。如图4所示,ImageNet上具有类似现象。

The degradation (of training accuracy) indicates that not all systems are similarly easy to optimize. Let us consider a shallower architecture and its deeper counterpart that adds more layers onto it. There exists a solution by construction to the deeper model: the added layers are identity mapping, and the other layers are copied from the learned shallower model. The existence of this constructed solution indicates that a deeper model should produce no higher training error than its shallower counterpart. But experiments show that our current solvers on hand are unable to find solutions that are comparably good or better than the constructed solution (or unable to do so in feasible time).

退化(训练准确率)表明不是所有的系统都很容易优化。让我们考虑一个较浅的架构及其更深层次的对象,为其添加更多的层。存在通过构建得到更深层模型的解决方案:添加的层是恒等映射,其他层是从学习到的较浅模型的拷贝。这种构造解决方案的存在表明,较深的模型不应该产生比其对应的较浅模型更高的训练误差。但是实验表明,我们目前现有的解决方案无法找到与构建的解决方案相比相对不错或更好的解决方案(或在合理的时间内无法实现)。

In this paper, we address the degradation problem by introducing a deep residual learning framework. Instead of hoping each few stacked layers directly fit a desired underlying mapping, we explicitly let these layers fit a residual mapping. Formally, denoting the desired underlying mapping as H(x), we let the stacked nonlinear layers fit another mapping of F(x) := H(x) − x. The original mapping is recast into F(x) + x. We hypothesize that it is easier to optimize the residual mapping than to optimize the original, unreferenced mapping. To the extreme, if an identity mapping were optimal, it would be easier to push the residual to zero than to fit an identity mapping by a stack of nonlinear layers.

在本文中,我们通过引入深度残差学习框架解决了退化问题。我们明确地让这些层拟合残差映射,而不是希望每几个堆叠的层直接拟合期望的基础映射。形式上,将期望的基础映射表示为H(x),我们将堆叠的非线性层拟合另一个映射F(x) := H(x) − x。原始的映射重写为F(x) + x。我们假设残差映射比原始的、未参考的映射更容易优化。在极端情况下,如果一个恒等映射是最优的,那么将残差置为零比通过一堆非线性层来拟合恒等映射更容易。

The formulation of F(x) + x can be realized by feedforward neural networks with “shortcut connections” (Fig. 2). Shortcut connections [2, 33, 48] are those skipping one or more layers. In our case, the shortcut connections simply perform identity mapping, and their outputs are added to the outputs of the stacked layers (Fig. 2). Identity shortcut connections add neither extra parameter nor computational complexity. The entire network can still be trained end-to-end by SGD with backpropagation, and can be easily implemented using common libraries (e.g., Caffe [19]) without modifying the solvers.

Figure 2. Residual learning: a building block.

公式F(x) + x可以通过带有“快捷连接”的前向神经网络(图2)来实现。快捷连接[2, 33, 48]是那些跳过一层或更多层的连接。在我们的案例中,快捷连接简单地执行恒等映射,并将其输出添加到堆叠层的输出(图2)。恒等快捷连接既不增加额外的参数也不增加计算复杂度。整个网络仍然可以由带有反向传播的SGD进行端到端的训练,并且可以使用公共库(例如,Caffe [19])轻松实现,而无需修改求解器。

2. 残差学习:构建块

We present comprehensive experiments on ImageNet [35] to show the degradation problem and evaluate our method. We show that: 1) Our extremely deep residual nets are easy to optimize, but the counterpart “plain” nets (that simply stack layers) exhibit higher training error when the depth increases; 2) Our deep residual nets can easily enjoy accuracy gains from greatly increased depth, producing results substantially better than previous networks.

我们在ImageNet[35]上进行了综合实验来显示退化问题并评估我们的方法。我们发现:1)我们极深的残差网络易于优化,但当深度增加时,对应的“简单”网络(简单堆叠层)表现出更高的训练误差;2)我们的深度残差网络可以从大大增加的深度中轻松获得准确性收益,生成的结果实质上比以前的网络更好。

Similar phenomena are also shown on the CIFAR-10 set [20], suggesting that the optimization difficulties and the effects of our method are not just akin to a particular dataset. We present successfully trained models on this dataset with over 100 layers, and explore models with over 1000 layers.

CIFAR-10数据集上[20]也显示出类似的现象,这表明了优化的困难以及我们的方法的影响不仅仅是针对一个特定的数据集。我们在这个数据集上展示了成功训练的超过100层的模型,并探索了超过1000层的模型。

On the ImageNet classification dataset [35], we obtain excellent results by extremely deep residual nets. Our 152-layer residual net is the deepest network ever presented on ImageNet, while still having lower complexity than VGG nets [40]. Our ensemble has 3.57% top-5 error on the ImageNet test set, and won the 1st place in the ILSVRC 2015 classification competition. The extremely deep representations also have excellent generalization performance on other recognition tasks, and lead us to further win the 1st places on: ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation in ILSVRC & COCO 2015 competitions. This strong evidence shows that the residual learning principle is generic, and we expect that it is applicable in other vision and non-vision problems.

ImageNet分类数据集[35]中,我们通过非常深的残差网络获得了很好的结果。我们的152层残差网络是ImageNet上最深的网络,同时还具有比VGG网络[40]更低的复杂性。我们的模型集合在ImageNet测试集上有3.57% top-5的错误率,并在ILSVRC 2015分类比赛中获得了第一名。极深的表示在其它识别任务中也有极好的泛化性能,并带领我们在进一步赢得了第一名:包括ILSVRC & COCO 2015竞赛中的ImageNet检测,ImageNet定位,COCO检测和COCO分割。坚实的证据表明残差学习准则是通用的,并且我们期望它适用于其它的视觉和非视觉问题。

2. Related Work

Residual Representations. In image recognition, VLAD [18] is a representation that encodes by the residual vectors with respect to a dictionary, and Fisher Vector [30] can be formulated as a probabilistic version [18] of VLAD. Both of them are powerful shallow representations for image retrieval and classification [4, 47]. For vector quantization, encoding residual vectors [17] is shown to be more effective than encoding original vectors.

2. 相关工作

残差表示。在图像识别中,VLAD[18]是一种通过关于字典的残差向量进行编码的表示形式,Fisher矢量[30]可以表示为VLAD的概率版本[18]。它们都是图像检索和图像分类[4,47]中强大的浅层表示。对于矢量量化,编码残差矢量[17]被证明比编码原始矢量更有效。

In low-level vision and computer graphics, for solving Partial Differential Equations (PDEs), the widely used Multigrid method [3] reformulates the system as subproblems at multiple scales, where each subproblem is responsible for the residual solution between a coarser and a finer scale. An alternative to Multigrid is hierarchical basis preconditioning [44, 45], which relies on variables that represent residual vectors between two scales. It has been shown [3, 44, 45] that these solvers converge much faster than standard solvers that are unaware of the residual nature of the solutions. These methods suggest that a good reformulation or preconditioning can simplify the optimization.

低层次视觉和计算机图形学中,为了求解偏微分方程(PDE),广泛使用的Multigrid方法[3]将系统重构为在多个尺度上的子问题,其中每个子问题负责较粗尺度和较细尺度的残差解。Multigrid的替代方法是层次化基础预处理[44,45],它依赖于表示两个尺度之间残差向量的变量。已经被证明[3,44,45]这些求解器比不知道解的残差性质的标准求解器收敛得更快。这些方法表明,良好的重构或预处理可以简化优化。

Shortcut Connections. Practices and theories that lead to shortcut connections [2, 33, 48] have been studied for a long time. An early practice of training multi-layer perceptrons (MLPs) is to add a linear layer connected from the network input to the output [33, 48]. In [43, 24], a few intermediate layers are directly connected to auxiliary classifiers for addressing vanishing/exploding gradients. The papers of [38, 37, 31, 46] propose methods for centering layer responses, gradients, and propagated errors, implemented by shortcut connections. In [43], an “inception” layer is composed of a shortcut branch and a few deeper branches.

快捷连接。实践和理论导致快捷连接[2,33,48]已经被研究了很长时间。训练多层感知机(MLP)的早期实践是添加一个线性层来连接网络的输入和输出[33,48]。在[43,24]中,一些中间层直接连接到辅助分类器,用于解决梯度消失/爆炸。论文[38,37,31,46]提出了通过快捷连接实现层间响应,梯度和传播误差的方法。在[43]中,一个“inception”层由一个快捷分支和一些更深的分支组成。

Concurrent with our work, “highway networks” [41, 42] present shortcut connections with gating functions [15]. These gates are data-dependent and have parameters, in contrast to our identity shortcuts that are parameter-free. When a gated shortcut is “closed” (approaching zero), the layers in highway networks represent non-residual functions. On the contrary, our formulation always learns residual functions; our identity shortcuts are never closed, and all information is always passed through, with additional residual functions to be learned. In addition, highway networks have not demonstrated accuracy gains with extremely increased depth (e.g., over 100 layers).

和我们同时进行的工作,“highway networks

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值