Given an array of n positive integers and a positive integer s, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn’t one, return 0 instead.
Example:
Input: s = 7, nums = [2,3,1,2,4,3]
Output: 2
Explanation: the subarray [4,3] has the minimal length under the problem constraint.
Follow up:
If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n).
解析:
subarray sum的问题肯定先想到prefix sum
此题是找最小的长度,相当于最小的窗口,很自然想到滑动窗口法
指针i, j, 右边的j 一直向右滑动,直到窗口之和 > target为止
满足后左边的i再开始向右收缩这个窗口
注意边界条件!j == a.length, 已经走到底了,但是循环还没结束,左边i还需要继续向右滑动.
如果sum<s, 那左边收缩就没意义了,可以退出
public int minSubArrayLen(int s, int[] a) {
int sum = 0, min = Integer.MAX_VALUE;
int i = 0, j=0;
for(;i<a.length;i++) {
while(j<a.length && sum < s) {
sum+=a[j++];
}
if(sum >= s) {
min = Math.min(min, j-i);
} else{
break; // 已经到底都满足不了,可以放弃了,再收缩没意义
}
//if(j == a.length) break; 右边到底了,左边还可以继续收缩呢,别退出
sum -= a[i];
}
return min == Integer.MAX_VALUE ? 0 : min;
}
follow up, 要求O(n logn)算法
那肯定想到要排序,或者binary search
因为数组里的数都是正数,和是递增的,其实用Binary search就可以
比较懒,写了个treemap的,复杂度一样
public int minSubArrayLen(int s, int[] a) {
int sum = 0, min = Integer.MAX_VALUE;
TreeMap<Integer, Integer> map = new TreeMap();
map.put(0, -1);
for(int i = 0;i<a.length;i++) {
sum+=a[i];
map.put(sum, i);
}
for(Map.Entry<Integer, Integer> entry: map.entrySet()) {
Map.Entry<Integer, Integer> ceiling = map.ceilingEntry(entry.getKey() + s);
if(ceiling != null) {
min = Math.min(min, ceiling.getValue() - entry.getValue());
} else {
break;
}
}
return min == Integer.MAX_VALUE ? 0 : min;
}