1155 Heap Paths (30 分)
In computer science, a heap is a specialized tree-based data structure that satisfies the heap property: if P is a parent node of C, then the key (the value) of P is either greater than or equal to (in a max heap) or less than or equal to (in a min heap) the key of C. A common implementation of a heap is the binary heap, in which the tree is a complete binary tree. (Quoted from Wikipedia at https://en.wikipedia.org/wiki/Heap_(data_structure))
One thing for sure is that all the keys along any path from the root to a leaf in a max/min heap must be in non-increasing/non-decreasing order.
Your job is to check every path in a given complete binary tree, in order to tell if it is a heap or not.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (1<N≤1,000), the number of keys in the tree. Then the next line contains N distinct integer keys (all in the range of int), which gives the level order traversal sequence of a complete binary tree.
Output Specification:
For each given tree, first print all the paths from the root to the leaves. Each path occupies a line, with all the numbers separated by a space, and no extra space at the beginning or the end of the line. The paths must be printed in the following order: for each node in the tree, all the paths in its right subtree must be printed before those in its left subtree.
Finally print in a line Max Heap if it is a max heap, or Min Heap for a min heap, or Not Heap if it is not a heap at all.
Sample Input 1:
8
98 72 86 60 65 12 23 50
Sample Output 1:
98 86 23
98 86 12
98 72 65
98 72 60 50
Max Heap
Sample Input 2:
8
8 38 25 58 52 82 70 60
Sample Output 2:
8 25 70
8 25 82
8 38 52
8 38 58 60
Min Heap
Sample Input 3:
8
10 28 15 12 34 9 8 56
Sample Output 3:
10 15 8
10 15 9
10 28 34
10 28 12 56
Not Heap
思路:
1.考虑到要输出叶节点的路径,利用完全二叉树的先序遍历即可(但要注意此处应是根右左的顺序打印路径)。
其中注意点也就是如何判断节点是否为叶节点。
2.有了每条路径自然可以知晓此路径是否有序, 若每条路径均有序则必为大顶堆或小顶堆,可利用反向判断更加方便。
#include<cstdio>
#include<vector>
using namespace std;
int heap[1010];
vector<int> tempPath;
int m;
int cnt; //用于统计叶节点个数
int flag1 = 0;
int flag2 = 0;
void printleafpath(int n) {
if (n > m)
return;
if (2 * n > m) { //判断是否是叶节点
tempPath.push_back(heap[n]); //压入叶节点
for (int i = 0; i < tempPath.size(); i++) {
printf("%d", tempPath[i]);
if (i < tempPath.size() - 1)
printf(" ");
}
for (int i = 0; i < tempPath.size(); i++) { //判断是否路径有序
for (int j = i + 1; j < tempPath.size(); j++) {
if (tempPath[i] < tempPath[j]) {
flag1 = 1;
}
if (tempPath[i] > tempPath[j]) {
flag2 = 1;
}
}
}
cnt--;
if (cnt > 0)
printf("\n"); //输出格式
tempPath.pop_back();
return;
}
tempPath.push_back(heap[n]);
printleafpath(2 * n + 1);
printleafpath(2 * n);
tempPath.pop_back();
}
int main() {
scanf("%d", &m);
for (int i = 1; i <= m; i++) {
scanf("%d", &heap[i]);
}
cnt = m - m / 2; //叶节点个数
printleafpath(1);
printf("\n");
if (flag1 == 1 && flag2 == 1) { //显然若两个标记均出现变化,则路径并非有序
printf("Not Heap");
}
else if (flag2 == 1) {
printf("Max Heap");
}
else if (flag1 == 1) {
printf("Min Heap");
}
return 0;
}