1155 Heap Paths (30 分)
In computer science, a heap is a specialized tree-based data structure that satisfies the heap property: if P is a parent node of C, then the key (the value) of P is either greater than or equal to (in a max heap) or less than or equal to (in a min heap) the key of C. A common implementation of a heap is the binary heap, in which the tree is a complete binary tree. (Quoted from Wikipedia at https://en.wikipedia.org/wiki/Heap_(data_structure))
One thing for sure is that all the keys along any path from the root to a leaf in a max/min heap must be in non-increasing/non-decreasing order.
Your job is to check every path in a given complete binary tree, in order to tell if it is a heap or not.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (1<N≤1,000), the number of keys in the tree. Then the next line contains N distinct integer keys (all in the range of int), which gives the level order traversal sequence of a complete binary tree.
Output Specification:
For each given tree, first print all the paths from the root to the leaves. Each path occupies a line, with all the numbers separated by a space, and no extra space at the beginning or the end of the line. The paths must be printed in the following order: for each node in the tree, all the paths in its right subtree must be printed before those in its left subtree.
Finally print in a line Max Heap
if it is a max heap, or Min Heap
for a min heap, or Not Heap
if it is not a heap at all.
Sample Input 1:
8
98 72 86 60 65 12 23 50
Sample Output 1:
98 86 23
98 86 12
98 72 65
98 72 60 50
Max Heap
Sample Input 2:
8
8 38 25 58 52 82 70 60
Sample Output 2:
8 25 70
8 25 82
8 38 52
8 38 58 60
Min Heap
Sample Input 3:
8
10 28 15 12 34 9 8 56
Sample Output 3:
10 15 8
10 15 9
10 28 34
10 28 12 56
Not Heap
思路分析:
利用完全二叉树性质建树。
DFS+stack求根到叶子路径。
利用上一步得到的路径,判断堆的类型。
#include<cstdio>
#include<iostream>
#define MAX 2000
using namespace std;
typedef struct NODE{
int data;
struct NODE *left;
struct NODE *right;
}NODE;
NODE *node[MAX];
int key[MAX];
int n;
int flag1=0,flag2=0;//1-max;2-min;3-no;
void init()
{
for(int i=0;i<MAX;i++)
{
node[i]=new NODE;
node[i]->data=-1;
node[i]->left=NULL;
node[i]->right=NULL;
key[i]= -1;
}
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&key[i]);
}
for(int i=1;i<=n;i++)
{
node[i]->data=key[i];
if(key[2*i]!=-1)node[i]->left=node[2*i];
if(key[2*i+1]!=-1)node[i]->right=node[2*i+1];
}
}
void preorder(NODE *root)
{
if(root==NULL)return;
printf("%d ",root->data);
preorder(root->left);
preorder(root->right);
}
NODE *stack[MAX];int top=-1;
void dfs(NODE *root)
{
if(root->left!=NULL||root->right!=NULL)//不是叶子结点
{
// printf("%d ",root->data);
stack[++top]=root;
if(stack[top]->right!=NULL)dfs(stack[top]->right);
if(stack[top]->left!=NULL)dfs(stack[top]->left);
top--;
return;
}
else//是叶子结点
{
stack[++top]=root;
for(int i=0;i<top;i++)printf("%d ",stack[i]->data);
printf("%d\n",stack[top]->data);
for(int i=1;i<=top;i++)
{
if(stack[i]->data>stack[i-1]->data)flag2=1;
if(stack[i]->data<stack[i-1]->data)flag1=1;
}
top--;
return;
}
}
int main()
{
init();
NODE *root = node[1];
// preorder(root);
dfs(root);
if(flag1==1&&flag2==1)printf("Not Heap");
if(flag1==1&&flag2==0)printf("Max Heap");
if(flag1==0&&flag2==1)printf("Min Heap");
}