java实现MapReduce词频统计

1 新建java maven项目

目录结构如下
在这里插入图片描述
####2. pom文件里面的内容

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>com.xyy</groupId>
    <artifactId>HDFSWordCount</artifactId>
    <version>1.0-SNAPSHOT</version>

    <dependencies>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-hdfs</artifactId>
            <version>2.7.3</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>2.7.3</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>2.7.3</version>
        </dependency>
    </dependencies>

</project>
编写java程序
package hdfs.wordcount;

import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WordCount {
    public static class TokenizerMapper
            extends Mapper<Object, Text, Text, IntWritable>{

        private final static IntWritable one = new IntWritable(1);
        private Text word = new Text();
        public void map(Object key, Text value, Context context
        ) throws IOException, InterruptedException {
            StringTokenizer itr = new StringTokenizer(value.toString());
            while (itr.hasMoreTokens()) {
                word.set(itr.nextToken());
                context.write(word, one);
            }
        }
    }
    public static class IntSumReducer
            extends Reducer<Text,IntWritable,Text,IntWritable> {
        private IntWritable result = new IntWritable();
        public void reduce(Text key, Iterable<IntWritable> values,
                           Context context
        ) throws IOException, InterruptedException {
            int sum = 0;
            for (IntWritable val : values) {
                sum += val.get();
            }
            result.set(sum);
            context.write(key, result);
        }
    }
    public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf, "word count");
        job.setJarByClass(WordCount.class);
        job.setMapperClass(TokenizerMapper.class);
        job.setCombinerClass(IntSumReducer.class);
        job.setReducerClass(IntSumReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}

打成jar包上传到服务器利用

hadoop jar <jar> [mainClass] args...
MapReduce是一种用于处理大规模数据集的编程模型,它可以将大数据集拆分成许多小块进行分布式处理,然后将结果进行合并。实现MapReduce词频统计可以通过以下步骤来完成: 1. 首先,将数据集划分为多个小块,每个小块被称为一个分片。然后,将每个分片传给多个Mapper进行并行处理。Mapper的任务是将输入的分片按行读取,并将每个行中的单词进行拆分,然后为每个单词生成一个键值对,其中键是单词本身,值设为1。 2. Mapper完成后,将生成的键值对传递给Reducer。Reducer的任务是对相同键的多个值进行合并和计数,然后输出结果。Reducer会接收到多个Mapper产生的键值对,首先对键值对按键进行排序,然后对相同键的多个值进行合并,并计算出该键出现的总次数。 3. 最后,将每个键和对应的计数结果作为输出,得到最终的词频统计结果。 为了实现这个过程,可以使用编程语言如Java编写Map和Reduce函数。在Map函数中,可以使用字符串的分割函数将行拆分为单词,并为每个单词生成一个键值对。在Reduce函数中,可以使用哈希表来合并相同键的值,并计算出总的出现次数。最后,将结果写入输出文件中。 为了实现分布式计算,可以使用分布式计算框架如Hadoop来管理MapReduce任务的调度和运行。Hadoop可以将输入数据切分为多个分片,并将它们分配给集群中的不同节点进行并行处理。同时,Hadoop还能够自动处理节点故障和数据丢失的情况,保证计算的可靠性和高可用性。 通过以上步骤和工具的组合,就可以实现MapReduce词频统计。这种方法可以有效地处理大规模数据集,并获得准确的词频统计结果。同时,由于分布式计算的优势,可以并行处理多个分片,大大提高计算效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值