THE WISDOM OF THE CROWD: RELIABLE DEEP REINFORCEMENT LEARNING THROUGH ENSEMBLES OF Q--FUNCTIONS

本文提出了一种利用人群智慧的集合方法,通过结合多个Q-函数近似器的估计来提高深度强化学习(DQN)的稳定性和性能。研究发现,这种方法在多个任务中显著改善了强化学习的表现,同时增强了选择动作的稳定性,减少了训练过程中的不稳定性。通过借鉴群体决策的理论,该方法在不牺牲与环境交互次数的情况下,降低了训练的不稳定性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ABSTRACT

Reinforcement learning agents learn by exploring the environment and then ex-ploiting what they have learned. This frees the human trainers from having to know the preferred action or intrinsic value of each encountered state. The cost of this freedom is reinforcement learning is slower and more unstable than su-pervised learning. We explore the possibility that ensemble methods can remedy these shortcomings and do so by investigating a novel technique which harnesses the wisdom of the crowds by bagging Q-function approximator estimates.

Our results show that this proposed approach improves all three tasks and rein-forcement learning approaches attempted. We are able to demonstrate that this is

adirect result of the increased sta

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Adam婷

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值