文章目录
行列式概念
1. n × n n×n n×n行列式
∣ a 11 a 12 a 13 … a 1 n a 21 a 22 a 23 … a 2 n ⋮ ⋮ ⋮ ⋮ ⋮ a n 1 a n 2 a n 3 … a n n ∣ \left| \begin{array}{ccc} a_{11}& a_{12}& a_{13} & \dots& a_{1n}\\ a_{21}& a_{22}& a_{23} & \dots& a_{2n}\\ \vdots & \vdots &\vdots &\vdots &\vdots \\ a_{n1}& a_{n2}& a_{n3} & \dots& a_{nn}\\ \end{array} \right| ∣∣∣∣∣∣∣∣∣a11a21⋮an1a12a22⋮an2a13a23⋮an3……⋮…a1na2n⋮ann∣∣∣∣∣∣∣∣∣
2. 几何意义
2 × 2 2×2 2×2:平行四边形面积
∣ a 11 a 12 a 21 a 22 ∣ = a 11 a 22 − a 12 a 21 \left| \begin{array}{ccc} a_{11}& a_{12}\\ a_{21}& a_{22} \end{array} \right|=a_{11}a_{22}-a_{12}a_{21} ∣∣∣∣a11a21a12a22∣∣∣∣=a11a22−a12a21
推导过程如下图:

- 向量不平行
∣ 3 1 1 3 ∣ = 8 \left|\begin{array}{ccc}3& 1\\1& 3\end{array}\right|=8 ∣∣∣∣3113∣∣∣∣=8面积为8,两向量线性无关 - 向量平行 ∣ 3 1 6 2 ∣ = 0 \left|\begin{array}{ccc}3& 1\\6& 2\end{array}\right|=0 ∣∣∣∣3612∣∣∣∣=0面积为0,两向量线性相关
3 × 3 3×3 3×3:六面体体积
∣ a 11 a 12 a 13 a 21 a 22 a 23 a 21 a 22 a