【51nod】1594 Gcd and Phi

本文解析了一道涉及数论的复杂题目,通过数学变换简化原始表达式,并使用线性筛法预处理得到最终答案。复杂度为O(nlogn)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题解

跟随小迪学姐的步伐,学习一下数论
小迪学姐太巨了!

这道题的式子很好推嘛

\(\sum_{i = 1}^{n} \sum_{j = 1}^{n} \sum_{d|\phi(i),\phi(j)} \phi(d) [gcd(\frac{\phi(i)}{d},\frac{\phi(j)}{d}) == 1]\)
\(\sum_{i = 1}^{n} \sum_{j = 1}^{n} \sum_{d|\phi(i),\phi(j)} \phi(d) \sum_{t | \frac{\phi(i)}{d},\frac{\phi(j)}{d}} \mu(t)\)
\(\sum_{i = 1}^{n} \sum_{j = 1}^{n} \sum_{T|\phi(i),\phi(j)} \sum_{d|T}\phi(d)\mu(\frac{T}{d})\)
\(g(T) = \sum_{d|T}\phi(d)\mu(\frac{T}{d})\)
\(\sum_{i = 1}^{n} \sum_{j = 1}^{n} \sum_{T|\phi(i),\phi(j)} g(T)\)
\(f(T) = \sum_{i = 1}^{n} \phi(i) == T\)
那么最后的答案就是
\(\sum_{T = 1}^{n} g(T) [\sum_{T|k} f(k)]^2\)
复杂度\(O(n \log n)\)

代码

#include <bits/stdc++.h>
#define MAXN 2000005
//#define ivorysi
#define enter putchar('\n')
#define space putchar(' ')
#define fi first
#define se second
#define pb push_back
#define mp make_pair
#define eps 1e-8
#define pii pair<int,int>
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
    res = 0;char c = getchar();T f = 1;
    while(c < '0' || c > '9') {
    if(c == '-') f = -1;
    c = getchar();
    }
    while(c >= '0' && c <= '9') {
    res = res * 10 + c - '0';
    c = getchar();
    }
    res *= f;
}
template<class T>
void out(T x) {
    if(x < 0) {putchar('-');x = -x;}
    if(x >= 10) {
    out(x / 10);
    }
    putchar('0' + x % 10);
}
int T,N;
int64 phi[MAXN],mu[MAXN],f[MAXN],g[MAXN];
bool nonprime[MAXN];
int prime[MAXN],tot;
void Solve() {
    read(N);
    int64 ans = 0;
    memset(f,0,sizeof(f));
    for(int i = 1 ; i <= N ; ++i) f[phi[i]]++;
    for(int i = 1 ; i <= N ; ++i) {
    int64 s = 0;
    int t = i;
    while(t <= N) s += f[t],t += i;
    ans += g[i] * s * s;
    }
    out(ans);enter;
}
int main() {
#ifdef ivorysi
    freopen("f1.in","r",stdin);
#endif
    read(T);
    mu[1] = 1;
    phi[1] = 1;
    for(int i = 2 ; i <= 2000000 ; ++i) {
    if(!nonprime[i]) {
        prime[++tot] = i;
        phi[i] = i - 1;
        mu[i] = -1;
    }
    for(int j = 1 ; j <= tot ; ++j) {
        if(prime[j] > 2000000 / i) break;
        nonprime[i * prime[j]] = 1;
        if(i % prime[j] == 0) phi[i * prime[j]] = phi[i] * prime[j],mu[i * prime[j]] = 0;
        else phi[i * prime[j]] = phi[i] * (prime[j] - 1),mu[i * prime[j]] = -mu[i];
    }
    }
    for(int i = 1 ; i <= 2000000 ; ++i) {
    int t = i;
    while(t <= 2000000) {
        g[t] += phi[i] * mu[t / i];
        t += i;
    }
    }
    while(T--) {
    Solve();
    }
    return 0;
}

转载于:https://www.cnblogs.com/ivorysi/p/9155736.html

题目 51nod 3478 涉及一个矩阵问题,要求通过最少的操作次数,使得矩阵中至少有 `RowCount` 行和 `ColumnCount` 列是回文的。解决这个问题的关键在于如何高效地枚举所有可能的行和列组合,并计算每种组合所需的操作次数。 ### 解法思路 1. **预处理每一行和每一列变为回文所需的最少操作次数**: - 对于每一行,计算将其变为回文所需的最少操作次数。这可以通过比较每对对称位置的值是否相同来完成。 - 对于每一列,计算将其变为回文所需的最少操作次数,方法同上。 2. **枚举所有可能的行和列组合**: - 由于 `N` 和 `M` 的最大值为 8,因此可以枚举所有可能的行组合和列组合。 - 对于每一种组合,计算其所需的最少操作次数,并取最小值。 3. **计算操作次数**: - 对于每一种组合,需要计算哪些行和列需要修改,并且注意行和列的交叉点可能会重复计算,因此需要去重。 ### 代码实现 以下是一个可能的实现方式,使用了枚举和位运算来处理组合问题: ```python def min_operations_to_palindrome(matrix, row_count, col_count): import itertools N = len(matrix) M = len(matrix[0]) # Precompute the cost to make each row a palindrome row_cost = [] for i in range(N): cost = 0 for j in range(M // 2): if matrix[i][j] != matrix[i][M - 1 - j]: cost += 1 row_cost.append(cost) # Precompute the cost to make each column a palindrome col_cost = [] for j in range(M): cost = 0 for i in range(N // 2): if matrix[i][j] != matrix[N - 1 - i][j]: cost += 1 col_cost.append(cost) min_total_cost = float('inf') # Enumerate all combinations of rows and columns rows = list(range(N)) cols = list(range(M)) from itertools import combinations for row_comb in combinations(rows, row_count): for col_comb in combinations(cols, col_count): # Calculate the cost for this combination cost = 0 # Add row costs for r in row_comb: cost += row_cost[r] # Add column costs for c in col_comb: cost += col_cost[c] # Subtract the overlapping cells for r in row_comb: for c in col_comb: # Check if this cell is part of the palindrome calculation if r < N // 2 and c < M // 2: if matrix[r][c] != matrix[r][M - 1 - c] and matrix[N - 1 - r][c] != matrix[N - 1 - r][M - 1 - c]: cost -= 1 min_total_cost = min(min_total_cost, cost) return min_total_cost # Example usage matrix = [ [0, 1, 0], [1, 0, 1], [0, 1, 0] ] row_count = 2 col_count = 2 result = min_operations_to_palindrome(matrix, row_count, col_count) print(result) ``` ### 代码说明 - **预处理成本**:首先计算每一行和每一列变为回文所需的最少操作次数。 - **枚举组合**:使用 `itertools.combinations` 枚举所有可能的行和列组合。 - **计算成本**:对于每一种组合,计算其成本,并考虑行和列交叉点的重复计算问题。 ### 复杂度分析 - **时间复杂度**:由于 `N` 和 `M` 的最大值为 8,因此枚举所有组合的时间复杂度为 $ O(N^{RowCount} \times M^{ColCount}) $,这在实际中是可接受的。 - **空间复杂度**:主要是存储预处理的成本,空间复杂度为 $ O(N + M) $。 ### 相关问题 1. 如何优化矩阵中行和列的枚举组合以减少计算时间? 2. 在计算行和列的交叉点时,如何更高效地处理重复计算的问题? 3. 如果矩阵的大小增加到更大的范围,如何调整算法以保持效率? 4. 如何处理矩阵中行和列的回文条件不同时的情况? 5. 如何扩展算法以支持更多的操作类型,例如翻转某个区域的值?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值