Machine Learning(by Andrew Ng) 学习笔记

本文探讨了机器学习中的两大核心方法:监督学习与无监督学习。监督学习通过已知的训练样本建立模型来预测新数据的输出结果,包括回归与分类问题;无监督学习则直接对输入数据进行建模,通过数据间的内在联系进行聚类分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


监督学习:通过已有的训练样本(即已知数据以及其对应的输出)来训练,从而得到一个最优模型,再利用这个模型将所有新的数据样本映射为相应的输出结果。
监督学习问题分为“回归”“分类”问题。
在回归问题中,我们试图用连续输出来预测结果,这意味着我们正在尝试将输入变量映射到一些连续函数。
在分类问题中,我们试图用离散输出来预测结果。换句话说,我们正在尝试将输入变量映射到离散类别。


无监督学习:事先不知道输出是怎样或知道的很少,需要直接对输入数据进行建模。 可以通过基于数据中的变量之间的关系对数据进行聚类来导出该结构。
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述

Covers CoreML, Vison, image and sequence classifiers, natural language processing, and more. Get started with Machine Learning for Apple and iOS! Want to know a secret? Machine learning isn’t really that hard to learn. The truth is, you don’t need a PhD from a prestigious university or a background in mathematics to do machine learning. If you already know how to code, you can pick up machine learning quite easily — promise! This book will get you started with machine learning on iOS and Apple devices. The first bit is a gentle introduction to the world of machine learning and what it has to offer — as well as what its limitations are. In the rest of the book, you’ll look at each of these topics in more detail, until you know enough to make machine learning a useful tool in your software development toolbox. There are now several high-level Apple frameworks, including Natural Language, Speech, and Vision, that provide advanced machine learning functionality behind simple APIs as part of Apple’s iOS tooling. Whether you want to convert speech to text, recognize language or grammatical structure, detect faces in photos or track moving objects in video, these frameworks have got you covered. In this book, you’ll learn how to use these tools and frameworks to make your apps smarter. Even better, you’ll learn how machine learning works behind the scenes — and why this technology is awesome. This book is for all Apple and iOS developers who are interested in learning how to train models, code image recognition systems, learn how natural language processing works, build sequence classifiers and more.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值