题目链接
https://lydsy.com/JudgeOnline/problem.php?id=2818
https://lydsy.com/JudgeOnline/problem.php?id=2820
题解
∑ p ∑ i = 1 n ∑ j = 1 m [ gcd ( i , j ) = p ] = ∑ T = 1 min ( n , m ) ⌊ n T ⌋ ⌊ m T ⌋ ∑ p ∣ T μ ( T p ) \begin{aligned} & \sum_{p} \sum_{i=1}^n\sum_{j=1}^m [\gcd(i,j)=p]\\ = & \sum_{T=1}^{\min(n,m)}\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor\sum_{p|T}\mu(\frac{T}{p}) \end{aligned} =p∑i=1∑nj=1∑m[gcd(i,j)=p]T=1∑min(n,m)⌊Tn⌋⌊Tm⌋p∣T∑μ(pT)
可以整除分块。
考虑
g
(
T
)
=
∑
p
∣
T
μ
(
T
p
)
g(T)=\sum_{p|T}\mu(\frac{T}{p})
g(T)=p∣T∑μ(pT)
则
g
(
T
)
=
{
0
T
=
1
1
T
∈
P
g
(
p
T
)
=
{
μ
(
T
)
p
∈
P
,
p
∣
T
μ
(
T
)
−
g
(
T
)
p
∈
P
,
p
∤
T
g(T)=\begin{cases} 0 & T=1\\ 1 & T\in \mathbb P \end{cases}\\ g(pT)=\begin{cases} \mu(T) & p\in \mathbb P,p \mid T\\ \mu(T)-g(T) & p\in \mathbb P,p\nmid T \end{cases}
g(T)={01T=1T∈Pg(pT)={μ(T)μ(T)−g(T)p∈P,p∣Tp∈P,p∤T
因此可以通过线筛求
g
g
g。
代码
BZOJ 2818
#include <cstdio>
int read()
{
int x=0,f=1;
char ch=getchar();
while((ch<'0')||(ch>'9'))
{
if(ch=='-')
{
f=-f;
}
ch=getchar();
}
while((ch>='0')&&(ch<='9'))
{
x=x*10+ch-'0';
ch=getchar();
}
return x*f;
}
const int maxn=10000000;
int p[maxn+10],prime[maxn+10],cnt,mu[maxn+10];
long long f[maxn+10];
int getprime()
{
p[1]=mu[1]=1;
f[1]=0;
for(int i=2; i<=maxn; ++i)
{
if(!p[i])
{
prime[++cnt]=i;
mu[i]=-1;
f[i]=1;
}
for(int j=1; (j<=cnt)&&(i*prime[j]<=maxn); ++j)
{
int x=i*prime[j];
p[x]=1;
if(i%prime[j]==0)
{
mu[x]=0;
f[x]=mu[i];
break;
}
mu[x]=-mu[i];
f[x]=-f[i]+mu[i];
}
}
for(int i=2; i<=maxn; ++i)
{
f[i]+=f[i-1];
}
return 0;
}
int n;
int main()
{
getprime();
n=read();
long long ans=0;
for(int l=1,r; l<=n; l=r+1)
{
r=n/(n/l);
ans+=(f[r]-f[l-1])*(n/l)*(n/l);
}
printf("%lld\n",ans);
return 0;
}
BZOJ 2820
#include <cstdio>
#include <algorithm>
int read()
{
int x=0,f=1;
char ch=getchar();
while((ch<'0')||(ch>'9'))
{
if(ch=='-')
{
f=-f;
}
ch=getchar();
}
while((ch>='0')&&(ch<='9'))
{
x=x*10+ch-'0';
ch=getchar();
}
return x*f;
}
const int maxn=10000000;
int p[maxn+10],prime[maxn+10],cnt,mu[maxn+10];
long long f[maxn+10];
int getprime()
{
p[1]=mu[1]=1;
f[1]=0;
for(int i=2; i<=maxn; ++i)
{
if(!p[i])
{
prime[++cnt]=i;
mu[i]=-1;
f[i]=1;
}
for(int j=1; (j<=cnt)&&(i*prime[j]<=maxn); ++j)
{
int x=i*prime[j];
p[x]=1;
if(i%prime[j]==0)
{
mu[x]=0;
f[x]=mu[i];
break;
}
mu[x]=-mu[i];
f[x]=-f[i]+mu[i];
}
}
for(int i=2; i<=maxn; ++i)
{
f[i]+=f[i-1];
}
return 0;
}
int T,n,m;
int main()
{
getprime();
T=read();
while(T--)
{
n=read();
m=read();
long long ans=0;
for(int l=1,r; (l<=n)&&(l<=m); l=r+1)
{
r=std::min(n/(n/l),m/(m/l));
ans+=(f[r]-f[l-1])*(n/l)*(m/l);
}
printf("%lld\n",ans);
}
return 0;
}