BZOJ 4555 [Tjoi2016&Heoi2016]求和

本文详细解析了一道算法竞赛题目,该题目要求计算一个包含斯特林数的复杂序列的和。通过数学推导简化了问题,并利用快速傅立叶变换(NTT)优化了计算过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接

https://www.lydsy.com/JudgeOnline/problem.php?id=4555

题解

f(n)=i=0nj=0iS(i,j)×2j×j!=i=0nj=0nS(i,j)×2j×j!=i=0nj=0n2jk=0j(1)k(jk)(jk)i=i=0nj=0n2j×j!k=0j(1)kk!×(jk)i(jk)!=j=0n2j×j!k=0j(1)kk!×ni=0(jk)i(jk)!(1)(2)(1)(3)(2) (1) f ( n ) = ∑ i = 0 n ∑ j = 0 i S ( i , j ) × 2 j × j ! (2) = ∑ i = 0 n ∑ j = 0 n S ( i , j ) × 2 j × j ! (1) = ∑ i = 0 n ∑ j = 0 n 2 j ∑ k = 0 j ( − 1 ) k ( j k ) ( j − k ) i (3) = ∑ i = 0 n ∑ j = 0 n 2 j × j ! ∑ k = 0 j ( − 1 ) k k ! × ( j − k ) i ( j − k ) ! (2) = ∑ j = 0 n 2 j × j ! ∑ k = 0 j ( − 1 ) k k ! × ∑ i = 0 n ( j − k ) i ( j − k ) !

其中 (1) ( 1 ) 步骤使用了第二类斯特林数的展开式 S(i,j)=1j!jk=0(1)k(jk)(jk)i S ( i , j ) = 1 j ! ∑ k = 0 j ( − 1 ) k ( j k ) ( j − k ) i (2) ( 2 ) 步骤是一个卷积形式,模数比较特殊可以用NTT优化, ni=0(jk)i ∑ i = 0 n ( j − k ) i 很明显是一个等比数列求和。

代码

#include <cstdio>
#include <algorithm>

int read()
{
  int x=0,f=1;
  char ch=getchar();
  while((ch<'0')||(ch>'9'))
    {
      if(ch=='-')
        {
          f=-f;
        }
      ch=getchar();
    }
  while((ch>='0')&&(ch<='9'))
    {
      x=x*10+ch-'0';
      ch=getchar();
    }
  return x*f;
}

const int maxn=200000;
const int maxm=340000;
const int mod=998244353;
const int G=3;

int quickpow(int a,int b,int m)
{
  int res=1;
  while(b)
    {
      if(b&1)
        {
          res=1ll*res*a%m;
        }
      a=1ll*a*a%m;
      b>>=1;
    }
  return res;
}

int add(int x,int y,int m)
{
  int res=x+y;
  if(res>=m)
    {
      res-=m;
    }
  return res;
}

int minus(int x,int y,int m)
{
  int res=x-y;
  if(res<0)
    {
      res+=m;
    }
  return res;
}

int rev[maxm+10],a[maxm+10],b[maxm+10],ans[maxm+10];

int getrev(int n)
{
  int m=1,len=0;
  while(m<=n)
    {
      m<<=1;
      ++len;
    }
  for(int i=1; i<m; ++i)
    {
      rev[i]=(rev[i>>1]>>1)+((i&1)<<(len-1));
    }
  return m;
}

int fft(int *s,int len)
{
  for(int i=0; i<len; ++i)
    {
      if(rev[i]<i)
        {
          std::swap(s[rev[i]],s[i]);
        }
    }
  for(int i=2; i<=len; i<<=1)
    {
      int gn=quickpow(G,(mod-1)/i,mod);
      for(int j=0; j<len; j+=i)
        {
          int g=1;
          for(int k=0; k<(i>>1); ++k)
            {
              int x=s[j+k],y=1ll*g*s[j+k+(i>>1)]%mod;
              s[j+k]=add(x,y,mod);
              s[j+k+(i>>1)]=minus(x,y,mod);
              g=1ll*g*gn%mod;
            }
        }
    }
  return 0;
}

int main()
{
  int n=read();
  a[0]=1;
  int v=1;
  for(int i=1; i<=n; ++i)
    {
      v=1ll*minus(0,v,mod)*quickpow(i,mod-2,mod)%mod;
      a[i]=v;
    }
  b[0]=1;
  v=1;
  for(int i=1; i<=n; ++i)
    {
      v=1ll*v*quickpow(i,mod-2,mod)%mod;
      b[i]=1ll*minus(1,quickpow(i,n+1,mod),mod)*quickpow(minus(1,i,mod),mod-2,mod)%mod*v%mod;
    }
  b[1]=n+1;
  int m=getrev(n<<1);
  fft(a,m);
  fft(b,m);
  for(int i=0; i<m; ++i)
    {
      ans[i]=1ll*a[i]*b[i]%mod;
    }
  fft(ans,m);
  std::reverse(ans,ans+m+1);
  v=quickpow(m,mod-2,mod);
  for(int i=0; i<m; ++i)
    {
      ans[i]=1ll*ans[i]*v%mod;
    }
  v=1;
  int u=1;
  for(int i=0; i<=n; ++i)
    {
      v=add(v,1ll*quickpow(2,i,mod)*u%mod*ans[i]%mod,mod);
      u=1ll*u*(i+1)%mod;
    }
  printf("%d\n",v);
  return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值