HDU-1693-插头dp

本文深入探讨了插头DP与状态DP的概念,解释了它们之间的联系,并通过实例展示了如何运用状态DP来解决插头DP问题。文章强调了在解决此类问题时,理解状态DP的基础对于掌握插头DP至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

懂了这道题还不算懂插头dp。

我现在就是不懂插头dp。

要想懂插头dp就要先懂状态dp。

状态dp之于插头dp,就像 trie树之于ac自动机。


__int64 dp[13][13][1<<13];
int ok[13][13];
int n, m;


int main()
{
    int t;
    scanf("%d", &t);
    for(int tt=1; tt<=t; tt++)
    {
        scanf("%d%d", &n, &m);
        for(int i=1; i<=n; i++)
        {
            for(int j=1; j<=m; j++)
                scanf("%d", &ok[i][j]);
        }

        memset(dp, 0, sizeof(dp));
        dp[0][m][0] = 1;
        for(int i=1; i<=n; i++)
        {
            for(int k=0; k<(1<<m); k++)
                dp[i][0][k<<1] = dp[i-1][m][k];
            for(int j=1; j<=m; j++)
            {
                for(int k = 0; k<( 1<<(m+1) ); k++)
                {
                    int y = 1<<j;
                    int x = 1<<(j-1);
                    if(ok[i][j])
                    {
                        if( (k&x)==0 && (k&y)==0 )
                            dp[i][j][k] = dp[i][j-1][k+x+y];
                        else if( (k&x)!=0 && (k&y)!=0 )
                            dp[i][j][k] = dp[i][j-1][k-x-y];
                        else
                            dp[i][j][k] = dp[i][j-1][k] + dp[i][j-1][k^x^y];
                    }
                    else
                    {
                        if( (k&x)==0 && (k&y)==0 )
                            dp[i][j][k] = dp[i][j-1][k];
                        else
                            dp[i][j][k] = 0;
                    }
                }
            }
        }
        printf("Case %d: There are %I64d ways to eat the trees.\n",tt, dp[n][m][0]);
    }
	return 0;
}



HDU-3480 是一个典型的动态规划问题,其题目标题通常为 *Division*,主要涉及二维费用背包问题或优化后的动态规划策略。题目大意是:给定一个整数数组,将其划分为若干个连续的子集,每个子集最多包含 $ m $ 个元素,并且每个子集的最大值与最小值之差不能超过给定的阈值 $ t $,目标是使所有子集的划分代价总和最小。每个子集的代价是该子集最大值与最小值的差值。 ### 动态规划思路 设 $ dp[i] $ 表示前 $ i $ 个元素的最小代价。状态转移方程如下: $$ dp[i] = \min_{j=0}^{i-1} \left( dp[j] + cost(j+1, i) \right) $$ 其中 $ cost(j+1, i) $ 表示从第 $ j+1 $ 到第 $ i $ 个元素构成一个子集的代价,即 $ \max(a[j+1..i]) - \min(a[j+1..i]) $。 为了高效计算 $ cost(j+1, i) $,可以使用滑动窗口或单调队列等数据结构来维护区间最大值与最小值,从而将时间复杂度优化到可接受的范围。 ### 示例代码 以下是一个简化版本的动态规划实现,使用暴力方式计算区间代价,适用于理解问题结构: ```cpp #include <bits/stdc++.h> using namespace std; const int INF = 0x3f3f3f3f; const int MAXN = 10010; int a[MAXN]; int dp[MAXN]; int main() { int T, n, m; cin >> T; for (int Case = 1; Case <= T; ++Case) { cin >> n >> m; for (int i = 1; i <= n; ++i) cin >> a[i]; dp[0] = 0; for (int i = 1; i <= n; ++i) { dp[i] = INF; int mn = a[i], mx = a[i]; for (int j = i; j >= max(1, i - m + 1); --j) { mn = min(mn, a[j]); mx = max(mx, a[j]); if (mx - mn <= T) { dp[i] = min(dp[i], dp[j - 1] + mx - mn); } } } cout << "Case " << Case << ": " << dp[n] << endl; } return 0; } ``` ### 优化策略 - **单调队列**:可以使用两个单调队列分别维护当前窗口的最大值与最小值,从而将区间代价计算的时间复杂度从 $ O(n^2) $ 降低到 $ O(n) $。 - **斜率优化**:若问题满足特定的决策单调性,可以考虑使用斜率优化技巧进一步加速状态转移过程。 ### 时间复杂度分析 原始暴力解法的时间复杂度为 $ O(n^2) $,在 $ n \leq 10^4 $ 的情况下可能勉强通过。通过单调队列优化后,可以稳定运行于 $ O(n) $ 或 $ O(n \log n) $。 ### 应用场景 HDU-3480 的问题模型可以应用于资源调度、任务划分等场景,尤其适用于需要控制子集内部差异的问题,如图像分块压缩、数据分段处理等[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值