多通道人脸呈现攻击检测:方法、实验与结果
1. 训练框架与算法
在训练阶段,仅使用来自真实类别的嵌入来训练单类高斯混合模型(GMM)。测试时,样本首先通过网络得到嵌入 $x$,然后输入到单类 GMM 中得到对数似然分数:
[score = \log(p(x|\Theta))]
以下是训练框架的算法:
Algorithm 1: Algorithm for training the proposed framework
Data: (xi, yi), where xi is multi-channel input and yi ∈ {0, 1}; 0 – for attack and 1 – for bonafide
Result: WC – CNN weights, Θ_GMM – Parameters of GMM
1 Constants : λ – weighting factor, μ – learning rate
2 Initialize : CBF – center of bonafide class, WC – initial weights of CNN from pre-trained model
3 for mini-batch ← 1 to P do
4 Forward xi through the CNN
5 Compute the combined loss: L = (1 − λ)L_BCE + λL_OCCL
6 Back-propagate the loss and update the weights of DSUs and FC layers
7 U
超级会员免费看
订阅专栏 解锁全文
24

被折叠的 条评论
为什么被折叠?



