§ 7 分块乘法的初等变换及应用举例
将分块乘法与初等变换结合是矩阵运算中极重要的手段。
现将某个单位矩阵进行如下分块:
(EmOOEn)\left(\begin{array}{cc} \boldsymbol{E}_{m} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{E}_{n} \end{array}\right)(EmOOEn)
对它进行两行(列)对换,某一行(列)左乘(右乘)一个矩阵 P\boldsymbol{P}P,一行(列)加上另一行(列)的 P\boldsymbol{P}P(矩阵)倍数,就可得到如下类型的一些矩阵:
(OEnEmO),(POOEn),(EmOOP),(EmPOEn),(EmOPEn)\left(\begin{array}{cc} \boldsymbol{O} & \boldsymbol{E}_{n} \\ \boldsymbol{E}_{m} & \boldsymbol{O} \end{array}\right), \quad \left(\begin{array}{ll} \boldsymbol{P} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{E}_{n} \end{array}\right), \quad \left(\begin{array}{cc} \boldsymbol{E}_{m} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{P} \end{array}\right), \quad \left(\begin{array}{cc} \boldsymbol{E}_{m} & \boldsymbol{P} \\ \boldsymbol{O} & \boldsymbol{E}_{n} \end{array}\right), \quad \left(\begin{array}{cc} \boldsymbol{E}_{m} & \boldsymbol{O} \\ \boldsymbol{P} & \boldsymbol{E}_{n} \end{array}\right)(OEmEnO),(POOEn),(EmOOP),(EmOPEn),(EmPOEn)
和初等矩阵与初等变换的关系一样,用这些矩阵左乘任一个分块矩阵
(ABCD)\left(\begin{array}{ll} \boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{C} & \boldsymbol{D} \end{array}\right)(ACBD)
只要分块乘法能够进行,其结果就是对它进行相应的变换,即:
(OEmEnO)(ABCD)=(CDAB)(1)\left(\begin{array}{cc} \boldsymbol{O} & \boldsymbol{E}_{m} \\ \boldsymbol{E}_{n} & \boldsymbol{O} \end{array}\right)\left(\begin{array}{ll} \boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{C} & \boldsymbol{D} \end{array}\right) = \left(\begin{array}{ll} \boldsymbol{C} & \boldsymbol{D} \\ \boldsymbol{A} & \boldsymbol{B} \end{array}\right) \quad (1)(OEnEmO)(ACBD)=(CADB)(1)
(POOEn)(ABCD)=(PAPBCD)(2)\left(\begin{array}{ll} \boldsymbol{P} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{E}_{n} \end{array}\right)\left(\begin{array}{ll} \boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{C} & \boldsymbol{D} \end{array}\right) = \left(\begin{array}{cc} \boldsymbol{P}\boldsymbol{A} & \boldsymbol{P}\boldsymbol{B} \\ \boldsymbol{C} & \boldsymbol{D} \end{array}\right) \quad (2)(POOEn)(ACBD)=(PACPBD)(2)
(EmOPEn)(ABCD)=(ABC+PAD+PB)(3)\left(\begin{array}{cc} \boldsymbol{E}_{m} & \boldsymbol{O} \\ \boldsymbol{P} & \boldsymbol{E}_{n} \end{array}\right)\left(\begin{array}{ll} \boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{C} & \boldsymbol{D} \end{array}\right) = \left(\begin{array}{cc} \boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{C}+\boldsymbol{P}\boldsymbol{A} & \boldsymbol{D}+\boldsymbol{P}\boldsymbol{B} \end{array}\right) \quad (3)(EmPOEn)(ACBD)=(AC+PABD+PB)(3)
同样,用它们右乘任一矩阵,进行分块乘法时也有相应的结果,我们不写出了。
在(3)中,适当选择 P\boldsymbol{P}P,可使 C+PA=O\boldsymbol{C}+\boldsymbol{P}\boldsymbol{A}=\boldsymbol{O}C+PA=O。例如 A\boldsymbol{A}A 可逆时,选 P=−CA−1\boldsymbol{P}=-\boldsymbol{C}\boldsymbol{A}^{-1}P=−CA−1,则 C+PA=O\boldsymbol{C}+\boldsymbol{P}\boldsymbol{A}=\boldsymbol{O}C+PA=O。于是(3)的右端成为
(ABOD−CA−1B)\left(\begin{array}{cc} \boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{O} & \boldsymbol{D}-\boldsymbol{C}\boldsymbol{A}^{-1}\boldsymbol{B} \end{array}\right)(AOBD−CA−1B)
这种形状的矩阵在求行列式、逆矩阵和解决其他问题时是比较方便的,因此(3)中的运算非常有用。
下面举些例子看看这些公式的应用。
例 1
T=(AOCD)\boldsymbol{T} = \left(\begin{array}{ll} \boldsymbol{A} & \boldsymbol{O} \\ \boldsymbol{C} & \boldsymbol{D} \end{array}\right)T=(ACOD)
A,D\boldsymbol{A}, \boldsymbol{D}A,D 可逆,求 T−1\boldsymbol{T}^{-1}T−1。
由
(EmO−CA−1En)(AOCD)=(AOOD)\left(\begin{array}{cc} \boldsymbol{E}_{m} & \boldsymbol{O} \\ -\boldsymbol{C}\boldsymbol{A}^{-1} & \boldsymbol{E}_{n} \end{array}\right)\left(\begin{array}{ll} \boldsymbol{A} & \boldsymbol{O} \\ \boldsymbol{C} & \boldsymbol{D} \end{array}\right) = \left(\begin{array}{ll} \boldsymbol{A} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{D} \end{array}\right)(Em−CA−1OEn)(ACOD)=(AOOD)
及
(AOOD)−1=(A−1OOD−1)\left(\begin{array}{ll} \boldsymbol{A} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{D} \end{array}\right)^{-1} = \left(\begin{array}{cc} \boldsymbol{A}^{-1} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{D}^{-1} \end{array}\right)(AOOD)−1=(A−1OOD−1)
易知
T−1=(A−1OOD−1)(EmO−CA−1En)=(A−1O−D−1CA−1D−1)\boldsymbol{T}^{-1} = \left(\begin{array}{cc} \boldsymbol{A}^{-1} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{D}^{-1} \end{array}\right)\left(\begin{array}{cc} \boldsymbol{E}_{m} & \boldsymbol{O} \\ -\boldsymbol{C}\boldsymbol{A}^{-1} & \boldsymbol{E}_{n} \end{array}\right) = \left(\begin{array}{cc} \boldsymbol{A}^{-1} & \boldsymbol{O} \\ -\boldsymbol{D}^{-1}\boldsymbol{C}\boldsymbol{A}^{-1} & \boldsymbol{D}^{-1} \end{array}\right)T−1=(A−1OOD−1)(Em−CA−1OEn)=(A−1−D−1CA−1OD−1)
例 2
T1=(ABCD)\boldsymbol{T}_{1} = \left(\begin{array}{ll} \boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{C} & \boldsymbol{D} \end{array}\right)T1=(ACBD)
设 T1\boldsymbol{T}_{1}T1 可逆,D\boldsymbol{D}D 可逆,试证 (A−BD−1C)−1\left(\boldsymbol{A}-\boldsymbol{B}\boldsymbol{D}^{-1}\boldsymbol{C}\right)^{-1}(A−BD−1C)−1 存在,并求 T1−1\boldsymbol{T}_{1}^{-1}T1−1。
由
(Em−BD−1OEn)(ABCD)=(A−BD−1COCD)\left(\begin{array}{cc} \boldsymbol{E}_{m} & -\boldsymbol{B}\boldsymbol{D}^{-1} \\ \boldsymbol{O} & \boldsymbol{E}_{n} \end{array}\right)\left(\begin{array}{ll} \boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{C} & \boldsymbol{D} \end{array}\right) = \left(\begin{array}{cc} \boldsymbol{A}-\boldsymbol{B}\boldsymbol{D}^{-1}\boldsymbol{C} & \boldsymbol{O} \\ \boldsymbol{C} & \boldsymbol{D} \end{array}\right)(EmO−BD−1En)(ACBD)=(A−BD−1CCOD)
而右端仍可逆,故 (A−BD−1C)−1\left(\boldsymbol{A}-\boldsymbol{B}\boldsymbol{D}^{-1}\boldsymbol{C}\right)^{-1}(A−BD−1C)−1 存在。
再由例 1,知
T1−1=((A−BD−1C)−1O−D−1C(A−BD−1C)−1D−1)(Em−BD−1OEn)=((A−BD−1C)−1−(A−BD−1C)−1BD−1−D−1C(A−BD−1C)−1D−1C(A−BD−1C)−1BD−1+D−1)\begin{aligned} \boldsymbol{T}_{1}^{-1} &= \left(\begin{array}{cc} \left(\boldsymbol{A}-\boldsymbol{B}\boldsymbol{D}^{-1}\boldsymbol{C}\right)^{-1} & \boldsymbol{O} \\ -\boldsymbol{D}^{-1}\boldsymbol{C}\left(\boldsymbol{A}-\boldsymbol{B}\boldsymbol{D}^{-1}\boldsymbol{C}\right)^{-1} & \boldsymbol{D}^{-1} \end{array}\right)\left(\begin{array}{cc} \boldsymbol{E}_{m} & -\boldsymbol{B}\boldsymbol{D}^{-1} \\ \boldsymbol{O} & \boldsymbol{E}_{n} \end{array}\right) \\ &= \left(\begin{array}{cc} \left(\boldsymbol{A}-\boldsymbol{B}\boldsymbol{D}^{-1}\boldsymbol{C}\right)^{-1} & -\left(\boldsymbol{A}-\boldsymbol{B}\boldsymbol{D}^{-1}\boldsymbol{C}\right)^{-1}\boldsymbol{B}\boldsymbol{D}^{-1} \\ -\boldsymbol{D}^{-1}\boldsymbol{C}\left(\boldsymbol{A}-\boldsymbol{B}\boldsymbol{D}^{-1}\boldsymbol{C}\right)^{-1} & \boldsymbol{D}^{-1}\boldsymbol{C}\left(\boldsymbol{A}-\boldsymbol{B}\boldsymbol{D}^{-1}\boldsymbol{C}\right)^{-1}\boldsymbol{B}\boldsymbol{D}^{-1}+\boldsymbol{D}^{-1} \end{array}\right) \end{aligned}T1−1=((A−BD−1C)−1−D−1C(A−BD−1C)−1OD−1)(EmO−BD−1En)=((A−BD−1C)−1−D−1C(A−BD−1C)−1−(A−BD−1C)−1BD−1D−1C(A−BD−1C)−1BD−1+D−1)
例 3
证明行列式的乘积公式 ∣AB∣=∣A∣∣B∣|\boldsymbol{A}\boldsymbol{B}|=|\boldsymbol{A}||\boldsymbol{B}|∣AB∣=∣A∣∣B∣。
设 A,B\boldsymbol{A}, \boldsymbol{B}A,B 为 n×nn \times nn×n 矩阵,作
(EnAOEn)(AO−EnB)=(OAB−EnB)(4)\left(\begin{array}{cc} \boldsymbol{E}_{n} & \boldsymbol{A} \\ \boldsymbol{O} & \boldsymbol{E}_{n} \end{array}\right)\left(\begin{array}{cc} \boldsymbol{A} & \boldsymbol{O} \\ -\boldsymbol{E}_{n} & \boldsymbol{B} \end{array}\right) = \left(\begin{array}{cc} \boldsymbol{O} & \boldsymbol{A}\boldsymbol{B} \\ -\boldsymbol{E}_{n} & \boldsymbol{B} \end{array}\right) \quad (4)(EnOAEn)(A−EnOB)=(O−EnABB)(4)
令
Pij=(EnEijOEn),i,j=1,2,⋯ ,n\boldsymbol{P}_{ij} = \left(\begin{array}{cc} \boldsymbol{E}_{n} & \boldsymbol{E}_{ij} \\ \boldsymbol{O} & \boldsymbol{E}_{n} \end{array}\right), \quad i, j = 1, 2, \cdots, nPij=(EnOEijEn),i,j=1,2,⋯,n
其中 Eij\boldsymbol{E}_{ij}Eij 为 n×nn \times nn×n 矩阵,除了第 iii 行第 jjj 列元素为 aija_{ij}aij 外,其他元素皆为零。故由初等矩阵与初等变换的关系,易得
P11P12⋯P1n⋯Pn1⋯Pnn(EnOOEn)=(EnAOEn)\boldsymbol{P}_{11}\boldsymbol{P}_{12}\cdots\boldsymbol{P}_{1n}\cdots\boldsymbol{P}_{n1}\cdots\boldsymbol{P}_{nn}\left(\begin{array}{cc} \boldsymbol{E}_{n} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{E}_{n} \end{array}\right) = \left(\begin{array}{cc} \boldsymbol{E}_{n} & \boldsymbol{A} \\ \boldsymbol{O} & \boldsymbol{E}_{n} \end{array}\right)P11P12⋯P1n⋯Pn1⋯Pnn(EnOOEn)=(EnOAEn)
又由 Pij\boldsymbol{P}_{ij}Pij 所对应的初等变换是某行加上另外一行的倍数,它不改变行列式的值,于是
∣(EnAOEn)(AO−EnB)∣=∣P11⋯Pnn(AO−EnB)∣=∣AO−EnB∣=∣A∣∣B∣(第二章 § 6 例 3)\begin{aligned} \left|\left(\begin{array}{cc} \boldsymbol{E}_{n} & \boldsymbol{A} \\ \boldsymbol{O} & \boldsymbol{E}_{n} \end{array}\right)\left(\begin{array}{cc} \boldsymbol{A} & \boldsymbol{O} \\ -\boldsymbol{E}_{n} & \boldsymbol{B} \end{array}\right)\right| &= \left|\boldsymbol{P}_{11}\cdots\boldsymbol{P}_{nn}\left(\begin{array}{cc} \boldsymbol{A} & \boldsymbol{O} \\ -\boldsymbol{E}_{n} & \boldsymbol{B} \end{array}\right)\right| \\ &= \left|\begin{array}{cc} \boldsymbol{A} & \boldsymbol{O} \\ -\boldsymbol{E}_{n} & \boldsymbol{B} \end{array}\right| = |\boldsymbol{A}||\boldsymbol{B}| \text{(第二章 § 6 例 3)} \end{aligned}(EnOAEn)(A−EnOB)=P11⋯Pnn(A−EnOB)=A−EnOB=∣A∣∣B∣(第二章 § 6 例 3)
但(4)的右端可经 nnn 个两列对换变成
(ABOB−En)\left(\begin{array}{cc} \boldsymbol{A}\boldsymbol{B} & \boldsymbol{O} \\ \boldsymbol{B} & -\boldsymbol{E}_{n} \end{array}\right)(ABBO−En)
故
∣OAB−EnB∣=(−1)n∣ABOB−En∣=(−1)n∣AB∣∣−En∣=∣AB∣\left|\begin{array}{cc} \boldsymbol{O} & \boldsymbol{A}\boldsymbol{B} \\ -\boldsymbol{E}_{n} & \boldsymbol{B} \end{array}\right| = (-1)^{n}\left|\begin{array}{cc} \boldsymbol{A}\boldsymbol{B} & \boldsymbol{O} \\ \boldsymbol{B} & -\boldsymbol{E}_{n} \end{array}\right| = (-1)^{n}|\boldsymbol{A}\boldsymbol{B}||-\boldsymbol{E}_{n}| = |\boldsymbol{A}\boldsymbol{B}|O−EnABB=(−1)nABBO−En=(−1)n∣AB∣∣−En∣=∣AB∣
这就证明了
∣A∣∣B∣=∣AB∣|\boldsymbol{A}||\boldsymbol{B}| = |\boldsymbol{A}\boldsymbol{B}|∣A∣∣B∣=∣AB∣
例 4
设 A=(aij)n×n\boldsymbol{A} = (a_{ij})_{n \times n}A=(aij)n×n,且
∣a11⋯a1k⋮⋮ak1⋯akk∣≠0,1⩽k⩽n\left|\begin{array}{ccc} a_{11} & \cdots & a_{1k} \\ \vdots & & \vdots \\ a_{k1} & \cdots & a_{kk} \end{array}\right| \neq 0, \quad 1 \leqslant k \leqslant na11⋮ak1⋯⋯a1k⋮akk=0,1⩽k⩽n
则有下三角形矩阵 Bn×n\boldsymbol{B}_{n \times n}Bn×n 使
BA=上三角形矩阵\boldsymbol{B}\boldsymbol{A} = \text{上三角形矩阵}BA=上三角形矩阵
证明 对 nnn 作归纳法。当 n=1n=1n=1 时,一阶矩阵既是上三角形的又是下三角形的,故命题自然成立。
设对 n−1n-1n−1 命题为真,我们来看
A1=(a11⋯a1,n−1⋮⋮an−1,1⋯an−1,n−1)\boldsymbol{A}_{1} = \left(\begin{array}{ccc} a_{11} & \cdots & a_{1,n-1} \\ \vdots & & \vdots \\ a_{n-1,1} & \cdots & a_{n-1,n-1} \end{array}\right)A1=a11⋮an−1,1⋯⋯a1,n−1⋮an−1,n−1
它仍满足命题中所设的条件。由归纳法假设,有下三角形矩阵 (B1)(n−1)×(n−1)(\boldsymbol{B}_{1})_{(n-1) \times (n-1)}(B1)(n−1)×(n−1) 满足 B1A1=\boldsymbol{B}_{1}\boldsymbol{A}_{1} =B1A1= 上三角形矩阵。
对 A\boldsymbol{A}A 作如下分块:
A=(A1βαann)\boldsymbol{A} = \left(\begin{array}{cc} \boldsymbol{A}_{1} & \boldsymbol{\beta} \\ \boldsymbol{\alpha} & a_{nn} \end{array}\right)A=(A1αβann)
则
(EO−αA1−11)(A1βαann)=(A1βO−αA1−1β+ann)\left(\begin{array}{cc} \boldsymbol{E} & \boldsymbol{O} \\ -\boldsymbol{\alpha}\boldsymbol{A}_{1}^{-1} & 1 \end{array}\right)\left(\begin{array}{cc} \boldsymbol{A}_{1} & \boldsymbol{\beta} \\ \boldsymbol{\alpha} & a_{nn} \end{array}\right) = \left(\begin{array}{cc} \boldsymbol{A}_{1} & \boldsymbol{\beta} \\ \boldsymbol{O} & -\boldsymbol{\alpha}\boldsymbol{A}_{1}^{-1}\boldsymbol{\beta}+a_{nn} \end{array}\right)(E−αA1−1O1)(A1αβann)=(A1Oβ−αA1−1β+ann)
再作
(B1OO1)(A1βO−αA1−1β+ann)=(B1A1B1βO−αA1−1β+ann)\left(\begin{array}{cc} \boldsymbol{B}_{1} & \boldsymbol{O} \\ \boldsymbol{O} & 1 \end{array}\right)\left(\begin{array}{cc} \boldsymbol{A}_{1} & \boldsymbol{\beta} \\ \boldsymbol{O} & -\boldsymbol{\alpha}\boldsymbol{A}_{1}^{-1}\boldsymbol{\beta}+a_{nn} \end{array}\right) = \left(\begin{array}{cc} \boldsymbol{B}_{1}\boldsymbol{A}_{1} & \boldsymbol{B}_{1}\boldsymbol{\beta} \\ \boldsymbol{O} & -\boldsymbol{\alpha}\boldsymbol{A}_{1}^{-1}\boldsymbol{\beta}+a_{nn} \end{array}\right)(B1OO1)(A1Oβ−αA1−1β+ann)=(B1A1OB1β−αA1−1β+ann)
这时矩阵已成为上三角形了。将两次乘法结合起来就得到
B=(B1OO1)(EO−αA1−11)=(B1O−αA1−11)\boldsymbol{B} = \left(\begin{array}{cc} \boldsymbol{B}_{1} & \boldsymbol{O} \\ \boldsymbol{O} & 1 \end{array}\right)\left(\begin{array}{cc} \boldsymbol{E} & \boldsymbol{O} \\ -\boldsymbol{\alpha}\boldsymbol{A}_{1}^{-1} & 1 \end{array}\right) = \left(\begin{array}{cc} \boldsymbol{B}_{1} & \boldsymbol{O} \\ -\boldsymbol{\alpha}\boldsymbol{A}_{1}^{-1} & 1 \end{array}\right)B=(B1OO1)(E−αA1−1O1)=(B1−αA1−1O1)
此即所要求的下三角形矩阵。
本文探讨了分块矩阵与初等变换的结合,通过实例展示了如何利用这些技巧进行矩阵运算,包括求逆矩阵和行列式计算。通过特定的矩阵变换,可以将矩阵转化为更便于处理的形式,从而简化计算过程。
1799

被折叠的 条评论
为什么被折叠?



