Problem:
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively
in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
Note: m and n will be at most 100
Analysis:
Solutions:
C++:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m = obstacleGrid.size();
int n = obstacleGrid[0].size();
if(m == 0 && n == 0)
return 0;
if(m == 0 || n == 0) {
return 1;
}
vector<vector<int> > num_of_paths;
for(int row = 0; row < m; ++row) {
vector<int> new_row;
for(int col = 0; col < n; ++col)
new_row.push_back(1);
num_of_paths.push_back(new_row);
}
for(int i = 0; i < n; ++i) {
if(obstacleGrid[0][i] == 1) {
for(int j = i; j < n; ++j)
num_of_paths[0][j] = 0;
break;
}
}
for(int i = 0; i < m; ++i) {
if(obstacleGrid[i][0] == 1) {
for(int j = i; j < m; ++j)
num_of_paths[j][0] = 0;
break;
}
}
for(int i = 1; i < m; ++i) {
for(int j = 1; j < n; ++j) {
if(obstacleGrid[i][j] == 1)
num_of_paths[i][j] = 0;
else
num_of_paths[i][j] = num_of_paths[i - 1][j] + num_of_paths[i][j - 1];
}
}
return num_of_paths[m - 1][n - 1];
}
Java:
Python: