欧拉角和旋转矩阵相互转换

源:https://blog.youkuaiyun.com/u012423865/article/details/78219787

欧拉角和旋转矩阵可同样表示刚体在三维空间的旋转,下面分享这两者互相转换的方法和核心代码

欧拉角转旋转矩阵 
欧拉角通过将刚体绕过原点的轴(i,j,k)旋转θ,分解成三步,如下图(蓝色是起始坐标系,而红色的是旋转之后的坐标系) 
 这里写图片描述
如果将每一个角度用旋转矩阵表示如下: 
 这里写图片描述
所以,容易得到,欧拉角转旋转矩阵如下: 

这里写图片描述

旋转矩阵转欧拉角 
将旋转矩阵表示如下: 

这里写图片描述
 
则可以如下表示欧拉角: 

这里写图片描述

代码

欧拉角转旋转矩阵
 

/**
 * 功能: 1. 通过给定的欧拉角计算对应的旋转矩阵
 * 作者: Zuo
 * 日期: 2017-10-12
**/
Mat eulerAnglesToRotationMatrix(Vec3f &theta)
{
    // 计算旋转矩阵的X分量
    Mat R_x = (Mat_<double>(3,3) <<
               1,       0,              0,
               0,       cos(theta[0]),   -sin(theta[0]),
               0,       sin(theta[0]),   cos(theta[0])
               );

    // 计算旋转矩阵的Y分量
    Mat R_y = (Mat_<double>(3,3) <<
               cos(theta[1]),    0,      sin(theta[1]),
               0,               1,      0,
               -sin(theta[1]),   0,      cos(theta[1])
               );

    // 计算旋转矩阵的Z分量
    Mat R_z = (Mat_<double>(3,3) <<
               cos(theta[2]),    -sin(theta[2]),      0,
               sin(theta[2]),    cos(theta[2]),       0,
               0,               0,                  1);

    // 合并 
    Mat R = R_z * R_y * R_x;

    return R;
}

 

旋转矩阵转欧拉角

/**
 * 功能: 1. 检查是否是旋转矩阵
 * 作者: Zuo
 * 日期: 2017-10-12
**/
bool isRotationMatrix(Mat &R)
{
    Mat Rt;
    transpose(R, Rt);
    Mat shouldBeIdentity = Rt * R;
    Mat I = Mat::eye(3,3, shouldBeIdentity.type());

    return  norm(I, shouldBeIdentity) < 1e-6;    
}

/**
 * 功能: 1. 通过给定的旋转矩阵计算对应的欧拉角
 * 作者: Zuo
 * 日期: 2017-10-12
**/
Vec3f rotationMatrixToEulerAngles(Mat &R)
{
    assert(isRotationMatrix(R));

    float sy = sqrt(R.at<double>(0,0) * R.at<double>(0,0) +  R.at<double>(1,0) * R.at<double>(1,0) );

    bool singular = sy < 1e-6; // If

    float x, y, z;
    if (!singular) {
        x = atan2(R.at<double>(2,1) , R.at<double>(2,2));
        y = atan2(-R.at<double>(2,0), sy);
        z = atan2(R.at<double>(1,0), R.at<double>(0,0));
    } else {
        x = atan2(-R.at<double>(1,2), R.at<double>(1,1));
        y = atan2(-R.at<double>(2,0), sy);
        z = 0;
    }
    return Vec3f(x, y, z);   
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NineDays66

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值