这是一道求欧拉函数的题目,题意十分直白,就是求欧拉函数的值,不过题目里关于互素的概念说的有点绕,让我看不太懂。
欧拉函数φ(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…..(1-1/pn),其中p1, p2……pn为x的所有质因数,x是不为0的整数(摘自百度百科),所以找出x的素因子就可以求解了。这道题虽然n很大,不过直接算就好了,不会超时。
代码(C++):
#include <cstdlib>
#include <iostream>
#include <cmath>
using namespace std;
int euler(int n)
{
int i,tmp=n,len;
len=sqrt(n*1.0);
for(i=2;i<=len;i++)
{
if(n%i==0)
{
tmp=tmp/i*(i-1);
while(n%i==0) n/=i;
}
}
if(n>1) tmp=tmp/n*(n-1);
return tmp;
}
int main(int argc, char *argv[])
{
int n;
while(cin>>n&&n!=0)
{
cout<<euler(n)<<endl;
}
system("PAUSE");
return EXIT_SUCCESS;
}
题目:
Relatives
Time Limit: 1000MS | Memory Limit: 65536K | |
Description
Given n, a positive integer, how many positive integers less than n are relatively prime to n? Two integers a and b are relatively prime if there are no integers x > 1, y > 0, z > 0 such that a = xy and b = xz.
Input
There are several test cases. For each test case, standard input contains a line with n <= 1,000,000,000. A line containing 0 follows the last case.
Output
For each test case there should be single line of output answering the question posed above.
Sample Input
7 12 0
Sample Output
6 4