Relatives
Time Limit: 1000MS |
Memory Limit: 65536K | |
Total Submissions: 16563 |
Accepted: 8410 |
Description
Given n, a positive integer, how many positive integers less than n are relatively prime to n? Two integers a and b are relatively prime if there are no integers x > 1, y > 0, z > 0 such that a = xy and b = xz.
Input
There are several test cases. For each test case, standard input contains a line with n <= 1,000,000,000. A line containing 0 follows the last case.
Output
For each test case there should be single line of output answering the question posed above.
Sample Input
7
12
0
Sample Output
6
4
题意:求输入数的欧拉函数
思路:直接套模板,单个欧拉函数的判断
代码 :
#include<cstdio>
typedef long long ll;
using namespace std;
int euler(ll n)//单个数的欧拉函数判断模板
{
ll ans=n;
for(int i=2;i*i<=n;i++)
{
if(n%i==0)
{
ans=ans/i*(i-1);//等价于ans=ans-ans/i
while(n%i==0)
n=n/i;
}
}
if(n>1) ans=ans/n*(n-1);
return ans;
}
int main()
{
ll n,t;
while(scanf("%lld",&n))
{
if(n==0) break;
ll temp=euler(n);
printf("%lld\n",temp);
}
return 0;
}