基于视觉智能的时间序列基础模型

图片

GitHub链接:ViTime: A Visual Intelligence-Based Foundation Model for Time Series Forecasting

论文链接:https://github.com/IkeYang/ViTime

前言

作者是来自西安理工大学,西北工业大学,以色列理工大学以及香港城市大学的研究者。

1. 研究动机:

近年来,深度学习模型在特定数据集上表现优异,但它们往往需要大量的领域特定数据进行训练,缺乏跨域泛化能力。这一挑战促使研究人员开始探索构建基础模型(Foundation Model)的可能性,以期望通过预训练获得通用的时间序列理解能力,进而实现跨域零样本(Zero-shot)或少样本(Few-shot)学习。

然而,现有的TSF基础模型面临着两个重大挑战:

1) 数值建模的局限性:

现有的TSF模型,包括基础模型,主要关注于直接拟合数值时间序列数据。这意味着这些模型的主要信息载体是时间维度上的数值关系。然而,人类在观察和预测趋势时,往往更倾向于通过视觉表征来理解数据,而非直接处理原始数值。

研究表明,人脑在处理视觉信息方面远比处理数值数据更为高效。人脑在处理视觉信息时的效率显著高于处

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值