论文标题:DUET: Dual Clustering Enhanced Multivariate Time Series Forecasting
论文链接:https://arxiv.org/pdf/2412.10859
代码链接:https://github.com/decisionintelligence/DUET
(后台回复“交流”加入讨论群,回复“资源”获取2024年度论文讲解合集)
前言
多变量时间序列预测(MTSF)在金融投资、能源管理、天气预测和交通优化等领域具有重要应用。然而,现实中的时间序列通常面临两大挑战:
-
时间模式的异质性,即由于外部因素的影响,真实时间序列往往表现出非平稳性(Temporal Distribution Shift, TDS),导致其分布和模式发生显著变化;
-
通道间的复杂关系,即不同通道(变量)之间通常存在复杂且交错的相关性,包括显著相关的通道、噪声通道以及无关通道,这种复杂性使得精准建模变得尤为困难。
近日,来自华东师范大学和丹麦奥尔堡大学的科研人员合作,创新性地提出了一种基于时间和通道双向聚类架构的时间序列预测模型DUET,在多变量时间序列预测领域取得了巨大的突破。DUET创新性的引入了一种时间和通道双向聚类架构,有效解决了时序分布漂移以及多变量时间序列中变量关系难以动态建模的难题。
研究背景
在实际应用中,描述不稳定系统的时间序列往往容易受到外部因素的影响。这种时间序列的非平稳性意味着数据分布会随着时间的推移发生变化,这一现象被称为时间分布漂移(Temporal Distribution Shift, TDS)TDS会导致时间序列呈现出不同的时间模式,这种现象正式被称为时间模式的异质性。
例如,图1(a) 展示了一个经济领域的时间序列,反映了随国际环境变化而产生的波动。
可以观