6、Using AdaBoost to Minimize Training Error: A Comprehensive Guide

AdaBoost训练误差最小化指南

Using AdaBoost to Minimize Training Error: A Comprehensive Guide

1. Introduction

AdaBoost is a powerful algorithm that can minimize the training error, i.e., the number of mistakes on the training set. Even when weak classifiers have error rates close to 50%, AdaBoost can drive the training error down rapidly. Our analysis is based on the assumption of empirical weak learnability, which offers generality and flexibility.

2. A Bound on AdaBoost’s Training Error

2.1 Main Theorem

We start by proving a fundamental bound on AdaBoost’s training error. The theorem provides a bound on the training error in terms of the error rates of the weak hypotheses, without assumptions about the training set or the weak learner.

Let $\gam

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值